
Python programming guide for

Earth Scientists

Maarten J. Waterloo and Vincent E.A. Post

Amsterdam Critical Zone Hydrology group

September 2015

Cover page: Meteorological tower in an abandoned agricultural field near Va-

gos, North Portugal, June 2008. Meteorological measurements are done for esti-

mating evapotranspiration rates.

Contents

1 Why use Python? 5

2 Basics of Python 7

2.1 Starting up Python . 7

2.1.1 Python through a text terminal 7

2.1.2 IDLE integrated development environment 9

2.1.3 SPYDER integrated development environment 10

2.2 Working with Python . 10

2.2.1 Commenting your code 10

2.2.2 Operators . 11

2.2.3 Using Python as a calculator 11

2.2.4 Use of modules to load functions 12

2.2.5 Variables and data types 14

2.2.6 Formatting of numbers using string format conversion specifiers 17

2.2.7 Arrays . 19

2.2.8 Combining or splitting arrays of data 21

3 Python scripts 24

3.1 What is a script? . 24

3.2 Example script . 24

3.3 Debugging . 27

3.4 Useful snippets of code . 27

4 Program flow control 29

4.1 Boolean tests . 29

4.2 The IF statement . 30

4.3 The FOR and WHILE statements 30

5 Functions in Python 33

5.1 Basic functions . 33

5.1.1 Help() function . 33

5.1.2 Find() function . 35

5.1.3 Mod() and floor() functions 36

5.1.4 Range functions . 36

3

5.2 Statistical functions . 37

5.3 Meteorological and hydrological functions 38

5.3.1 General meteorological functions: meteolib.py 38

5.3.2 Evaporation functions: evaplib.py 39

5.4 Defining your own functions . 39

5.4.1 Defining a named function 39

5.4.2 Lambda functions . 42

6 Object oriented programming in Python – Classes 43

7 File and directory manipulations 46

7.1 Directory manipulations . 46

7.2 Working with ASCII data files 48

7.2.1 Reading data from file with loadtxt() 48

7.2.2 Reading data from file with genfromtxt() 50

7.2.3 Saving Python variables to file 52

7.3 Working with NetCDF files . 53

8 Working with dates and times 54

9 Plotting data in a graph 57

9.1 Basics of plotting graphs . 57

9.2 More complicated graphs . 62

9.3 Interactive plotting of figures . 62

9.4 Changing text fonts in a figure 62

9.5 Creating subplots and a second y-axis 63

Index . 66

Chapter 1

Why use Python?

Students normally do most their calculations in spreadsheet programs such as MS

Excel or, if you do not have an MS Office license, the alternative open source

spreadsheet program Calc from Sun’s OpenOffice suite or the The Document Foun-

dation’s LibreOffice suite. Working with spreadsheets is easy to learn and it works

well when you deal with few data. However, suppose that you have long time series

of meteorological data, or 10 Hz data wind/temperature from a Sonic anemometer

(about 12 MB of data generated per day). In a spreadsheet program the maximum

column length would then be reached very quickly so that you would have to divide

your data over different sheets. This would be very inefficient. It is also compli-

cated to build a complex computer model in a spreadsheet to simulate hydrological

and micro-meteorological processes, such as groundwater flow, erosion, or release

of greenhouse gases. Another issue is that when you get additional data, you will

have to start copying all cells containing equations and you have to manually mod-

ify graphs that you made earlier.

Because of these limitations, professionals revert to writing dedicated computer

programs or scripts that can do the processing of data, do model calculations au-

tomatically and generate updated graphs. The most common compiled languages

for programming are the C programming language and its derivatives C++ or C#,

Java and Fortran, to name just a few. These languages are very powerful but have

the disadvantage that commands are not directly evaluated. Instead, the following

procedure has to be followed:

1. you have to write the program,

2. when you finish this, you need to compile it to create an executable,

3. you can then execute the program to get your results, but you may find some

bugs and have to start over again.

The advantages of compiled languages are that they very efficient in coding, have

little overhead and are therefore fast in execution. A disadvantage is that if you

do not have the program source code, porting the program to a different operating

system is difficult.

5

Another branch of programming languages are the interpreted languages. In-

terpreted programming languages are designed to be processed by an application

that translates your plain text instructions into actions inside the target application.

Here, your commands can be typed in and are directly evaluated by the interpreter

when you press the ENTER key, thus without the need for prior compilation. A

number of consecutive commands can be saved in an ASCII text file, which is

then called a script. Examples of interpreted languages are Matlab, Python and R.

This also means that as long as you have any of these programs installed on your

computer, you can run the script independent of the operating system.

A Matlab license is quite costly and you may not have Matlab available at

home. A good alternative is the open source Python language. Python is a very

versatile open-source programming language that can be used to process data in a

rather easy way. This document aims to teach you basic Python programming and

give you hints and examples on how to use Python in your scientific career.

Chapter 2

Basics of Python

2.1 Starting up Python

There are several distributions of Python that install the most frequently used

packages for you on a Microsoft Windows operating system machine. We use

the Python(x,y) distribution (http://www.pythonxy.com). If you want to install

Python on your computer, please visit http://python.hydrology-amsterdam.nl for

download and installation instructions. Alternatively, you can download and use

the Anaconda (https://store.continuum.io/cshop/anaconda/) or Enthought Python

(http://www.enthought.com) editions. NOTE: if you intend to use equations in your

graphs, you will need to install LATEX (see http://thesistools.hydrology-amsterdam.nl/)

on your computer as well.

If you use one of the Linux operating system distributions, such as my preferred

Debian distribution (https://www.debian.org/), Python comes pre-installed but you

may need to install additional packages such as python-matplotlib, python-pylab or

python-scipy. You can use Synaptic (as superuser, Figure 2.1) to see which python

packages are available and to install these.

There are various ways to interface and program with Python and three of these

are discussed below, appearing in order of increased complexity, flexibility and

ease of use.

2.1.1 Python through a text terminal

The most simple method to work with Python – that is if you are familiar with

Python already – is through a text terminal window. A text terminal, or text con-

sole, or terminal for short, is an interface to the computer that allows you to enter

text commands on the command line and displays output from the computer. In

Windows you open a command-line interpreter window by executing cmd.exe.

If you start up Python (or the more sophisticated IPython command shell win-

dow) from a terminal by entering Python (or ipython) at the terminal command-line

prompt, Python will start up and you will see some text identifying the version of

Python that is installed and the Python prompt (>>>), as shown in Figure 2.2.

7

Figure 2.1: Installing Python packages on a Debian OS distribution using the

Synaptic package manager.

Figure 2.2: Running Python from within a Debian Linux terminal window. Python

has started up and several commands have been entered at the Python prompt

(>>>).

Figure 2.3: IDLE shell window for working with Python.

The interfacing with Python is done in plain ASCII (American Standard Code

for Information Interchange) text that is typed in. If you use a Python terminal, a

separate ASCII text editor, such as the fancy Xemacs editor or the simple Notepad

or Wordpad text editors can be used to store your commands for later re-use.

2.1.2 IDLE integrated development environment

An easier way to interface with Python than through a terminal window is by IDLE.

IDLE is an Integrated Development Environment (IDE) for Python. This means

that it incorporates an editor for Python scripts and a command window with menus

for Python operations, such as running scripts or debugging (i.e. identifying errors

in your script). You can start Idle up from the start menu through Python(x,y), or

by typing ”idle” in a terminal command window. You will then see a shell window

similar to that in Figure 2.3. The >>> sign that you see at the start of the last line

in Figure 2.3 is called the prompt of the command line and indicates that Python is

ready to receive commands. In the following sections a short explanation of Python

programming is presented and we encourage you to try the commands out on your

computer.

Figure 2.4: Spyder integrated development environment for working with Python.

2.1.3 SPYDER integrated development environment

A more elaborate, Matlab-type of integrated development environment with ad-

vanced editing, interactive testing and debugging capabilities is provided in Python(x,y)

and is called Spyder. Spyder opens a single window (Figure 2.4) with various

menus and several screens for script editing, command interfacing, displaying your

variables, functions, etc. and a help function search field. In most cases, you may

prefer using Spyder, rather than the more austere methods discussed above, to use

Python.

2.2 Working with Python

When you started up Python you can enter commands in the shell command win-

dow and look at the output. We will be storing commands sequentially in a text file,

which is then called a Python script. You can find more about scripts in Chapter 3.

2.2.1 Commenting your code

If you insert a command in the Python shell window (Figure 2.3), you are writing

a single line of program code. Often, you will need to type in several lines of com-

mands, or statements to get the result that you need. Commenting your program,

or code, is extremely important as it allows you, or somebody else who has to work

with your code, to better understand what your code does. It is therefore very im-

portant to make a habit of explaining and commenting everything that you do in

your code!

There are two ways to include comments in program code. A one line comment

can be made using # at the beginning of the line, whereas a multi-line comment is

made using matching pairs of three apostrophes (”’ This is a multi-line comment

”’).

>>> # T h i s i s a one l i n e comment

>>> x = 3 # We a s s i g n a v a l u e o f 3 t o x

Multi-line comments are made by placing text between three single quotes (”’) in

a row:

>>> ’ ’ ’ T h i s i s a m u l t i l i n e comment

t h a t s p a n s

3 l i n e s ’ ’ ’

’ T h i s i s a m u l t i l i n e comment \n t h a t s p a n s \n 3 l i n e s ’

>>>

Assignment

Write two comment lines in the shell window. The first is a multi-line comment

and contains a text explaining the purpose of your script (make something up) and

the second line is a single line comment with the date and your name. Now open a

new text file in IDLE (open > new window) and copy these lines into the text file

and then save the file as yourname.py. This is now your script file. You can execute

or run this file by selecting the Run > run module commands that are displayed in

the top menu of your script file in Idle (see Figure 2.3), or pressing the ”run” button

in Spyder. Note that running the file with comments does not produce any output

in the shell window.

2.2.2 Operators

Python has operators that allow you to do basic calculations or work otherwise

with variables numbers or variables. The most well-known ones are the standard

mathematical operators (e.g. +, -, *, /), the ** power function operator, the %

modulus (returns remainder of division) and the \\ floor operators (returns division

result without decimal part).

Other operators are for comparison of values, such as == (equal to), != (not

equal to), logical operators such as and) and or, bitwise operators (e.g. the binary

& and | (or) operators, or membership operators (in, not in).

2.2.3 Using Python as a calculator

Python can be used as a very fancy calculator. You can do calculations with values

or with variables containing data. For instance, you could make a division by

typing:

>>> 3 . 0 / 4 . 0

0 . 7 5

>>>

We can also use variables in our calculations:

>>> a =3 .0

>>> b =4 .0

>>> a / b

0 . 7 5

>>>

Note that if we want to use scientific or mathematical functions, such as cos(),

sin() or sqrt(), we get an error message telling us that these functions are not de-

fined. In order to use these functions we need to load a module containing these

functions first (see Section 2.2.4 below).

>>> cos (3 0)

T raceback (most r e c e n t c a l l l a s t) :

F i l e ”<c o n s o l e>” , l i n e 1 , in <module>

NameError : name ’ cos ’ i s not d e f i n e d

>>>

Assignment

Using Python as a calculator, try to calculate the following in Python. Take a good

look at the output and keep the answers in mind while you read the next sections.

s i n (3 . 1 4) # t a k e t h e s i n e o f 3 . 1 4

2∗∗4 # F our th power o f 2

2 .∗∗4 # F our th power o f 2 . 0

3+4

3.0−4

3 . 0 / 4

3 / 4 . 0

3 . / 4

3 / 4

2.2.4 Use of modules to load functions

You will have noticed from the assignment above that Python does know how to

make a division, but does not know the command sin(x. Several of the basic math-

ematical functions are defined in Python. However, more advanced functions have

often been defined in special modules that serve as function libraries. These mod-

ules are normal Python .py files that contain many function definitions and can be

opened in your editor to see the contents. Popular modules are the math with math-

ematical functions, the scipy module with scientific Python functions, the datetime

module that contains date and time functions and the Pylab module with the mat-

plotlib library of functions for plotting of data. To use a function from such a

module, you have to import the module first. There are several ways to import a

module or a function in a module using the import and from–import statements:

1. import X: imports module X with all its functions and creates a reference

to it in the current namespace. You can now use function func(), defined

in module X, by calling X.func(). Functions with the same name can be

defined in different libraries. For instance, the function sin() is defined in the

module math, but also in the SCIentific PYthon scipy module. Using import

math and import scipy would give you two options for the same function.This

is the preferred way of importing functions as you always know for sure

which implementation of the function you use. As an example for the sin(x)

function, with x in radians, as defined in the math and scipy modules we see:

>>> import math

>>> import s c i p y

>>> math . s i n (2)

0.90929742682568171

>>> s c i p y . s i n (2)

0.90929742682568171

2. from X import *: imports module X, and creates references in the cur-

rent name space to all public objects (i.e. functions) defined in the module,

but not to objects starting with defined in the module. You can now use

the name of the function, without the module name (which is not defined),

to call the function but the X.func() command will not work here:

>>> from math import ∗
>>> cos (0 . 7 5)

0.7316888688738209

>>> math . cos (0 . 7 5)

T raceback (most r e c e n t c a l l l a s t) :

NameError : name ’ math ’ i s not d e f i n e d

Note that if func() was already defined in another module imported earlier

(for instance the scipy module), it will be overwritten and the latest imported

version will be used. This may create some confusion as two different func-

tions with the same name could potentially be available in your program.

3. from X import func1, func2, func3: This imports module X

and only provides references to func1, func2 and func3 to the user, but not

to the other functions defined in module X.

>>> from math import s in , cos , s q r t

>>> t a n (0 . 5)

T raceback (most r e c e n t c a l l l a s t) :

NameError : name ’ t a n ’ i s not d e f i n e d

>>> from math import t a n

>>> t a n (0 . 5)

0.54630248984379048

4. Y = import (’X’): this is like using import X but you can pass the

module name X to an arbitrary string (called Y here) and assign the module

to variable Y.

>>> N = i m p o r t (’numpy ’)

>>> N. cos (0 . 7 5)

0.7316888688738209

As said before, the preferred way is to use the first option (import X) as the other

options may create confusion, for instance when functions with the same name

(cos, sin) are defined in multiple modules (defined in the modules math, numpy –

numerical python module, scipy, etc.).

Two function libraries (modules) have been developed by M.J. Waterloo for use

in Hydrology and micro-meteorology. These are the meteolib.py module with stan-

dard meteorological functions and the evaplib.py module that has several functions

for calculating evaporation. See Section 5.3 for more on these modules.

Assignments

1. Import all functions from the the scipy module using method 2, then calculate

the square root (sqrt() function) of 2

2. Import the math module using method 1 and calculate the square root of 2.

3. Import only the function sqrt() from the numpy module and calculate the

square root of 2

4. Use method 4 to import the math module as M and calculate the square root

of 2

2.2.5 Variables and data types

Variables can be used to store data, such as numbers (1, 20.4, etc.), character strings

(’this is a text string’) or date information (’2002-03-11’, 2002, etc.). Variable

names consist of upper or lower case characters and numbers. Names cannot con-

tain spaces, commas, +, -, *, / and some other special characters. It is good practice

to use variable names that are recognisable, for instance a, b, x, y, z zero, alpha,

LAI, Lambda E, dummy 1, dummy 2, etc. are proper variable names. The lower

case characters i, j, n and m are by convention used in counters. At the prompt we

can assign values to variables a and b by typing the following commands:

>>> 3 ∗ 5

15

>>> a = 5

>>> a

5

>>>

b = 3

>>> b

3

>>> a ∗ b

15

>>>

We can look up the value of a by simply typing a at the prompt, as is done in

the above. We can also do calculations with these variables and use Python as a

calculator:

>>> c = a ∗ b

>>> c

15

>>>d = a / b

>>>d

1

>>>

In the assignment in Section 2.2.3 you have calculates 3/4 and may have no-

ticed that you got a value of 0 as the answer, rather than 0.75. Note again above

that the division of a by b gives a value of 1, instead of 1.66666666. This has to

do with how Python treats values. In the first case, the values 3 and 4 are both

integers, and the resulting division is therefore also an integer (0). If either one of

these values is a real value (float, 3., 3.0, 4., 4.0), then the division of 3.0 by 4.0

will also report a float (0.75). The type of value (integer, float, etc.) therefore is

important for the outcome of your calculations!

The same holds for the variable types. We again defined a and b as integer data

types by assigning them integer values (3, 5), instead of real or float data types

(3.0, 5.0). Multiplying or dividing two integer values with each other will return

an integer, but when one of these values is a float, the result of the calculation will

also be a float. We can define a or b as floats by adding a decimal point to the value

using statements:

>>> a = 5 . 0

>>> a

5 . 0

>>>d = a / b

>>>d

1.6666666666666667

>>>

Alternatively, you can convert an integer to a float or vice versa using the float()

and int() functions:

>>> f l o a t (b)

3 . 0

>>>i n t (a)

5

>>>

Integer and float types are two of the simple data types defined in Python. Other

simple data types dare the boolean bool, i.e. true or false) and complex (1+0j) data

types. The above variables only held one value and were therefore assigned simple

data types. You can see what type a variable is using the type() function:

>>> type (b)

<type ’ f l o a t ’>

>>>

To handle complex data, such as variables holding multiple values and/or text,

Python also know a number of complex data types called tuple, string, unicode,

list, set, frozenset and dictionary. The tuple can hold a mix of values and text that

are separated by commas, and these values cannot be changed:

>>> t e s t 1 = (1 , 2 . 0 , 5 , (3+2 j) , ’ t h e dog i s on t h e r o o f ’)

>>> t e s t 1

(1 , 2 . 0 , 5 , (3+2 j) , ’ t h e dog i s on t h e r o o f ’)

>>> type (t e s t 1)

<type ’ t u p l e ’>

>>>

The string type (defined as a ”string of characters”) only holds text:

>>> t e s t 2 = ’ t h e dog i s on t h e r o o f ’

>>> t e s t 2

’ t h e dog i s on t h e r o o f ’

>>> type (t e s t 2)

<type ’ s t r ’>

>>>

Another useful data type in Python is the dictionary type. This data type con-

sists of unordered key:value pairs that can for instance be used to use a kwargs

dictionary variable to pass arguments to a function. Dictionary values can be of

any type and can be duplicated in a dictionary, but the keys have to be unique and

can consist of strings, numbers or tuples. A dictionary can be made using the dict()

statement, for instance the following could be used to pass different arguments to

the genfromtxt() function to import data from a file (Section 7.2.1):

kwargs = d i c t (d e l i m i t e r =” , ” ,\
m i s s i n g v a l u e s ={” \”NAN\” ” } ,\
s k i p h e a d e r =5 ,\
s k i p f o o t e r =0 ,\
f i l l i n g v a l u e s ={−9999} ,\
c o n v e r t e r s = {0: s t r p d a t e 2 n u m (’\”%Y−%m−%d %H:%M:%S\” ’

) }\
)

Another way is to make the dictionary using key:value pairs enclosed by a

matching pair of {}:

m u s i c r a t i n g ={ ’ John Denver ’ : 3 . 0 , \
’ Frank Zappa ’ : 9 . 0 , \
’ J i m i Hendr ix ’ : 9 . 5 , \
’ J a n i s J o p l i n ’ : 8 . 0 , \
’ Lady Gaga ’ : 6 . 0 , \
’ Rumer ’ : 6 . 5 \
}

>>>m u s i c r a t i n g

{ ’ J i m i Hendr ix ’ : 9 . 5 , ’ Rumer ’ : 6 . 5 , ’ Lady Gaga ’ : 6 . 0 , ’ J a n i s

J o p l i n ’ : 8 . 0 , ’ Frank Zappa ’ : 9 . 0 , ’ John Denver ’ : 3 . 0}
>>> type (m u s i c r a t i n g)

<type ’ d i c t ’>

>>>

2.2.6 Formatting of numbers using string format conversion speci-

fiers

We often do calculations with numbers. For instance, we have measured water

level H and want to use a rating curve equation (Q=CHx) to calculate discharge

Q, where C and x are the rating curve coefficients. Suppose that H = 0.35 m,

C = 0.357 and x = 1.327, we can then calculate Q:

>>> H=0.35

>>> C=0.357

>>> x =1.327

>>> Q=C∗H∗∗x

>>> p r i n t (Q)

0.088643421532

Table 2.1: String format conversion specifiers

Specifier Output format

d Signed integer decimal

i Signed integer decimal

o Unsigned octal

u Unsigned decimal (obsolete)

x Unsigned hexadecimal (lowercase)

X Unsigned hexadecimal (uppercase)

e Floating point exponential format (lowercase)

E Floating point exponential format (uppercase)

f Floating point decimal format

F Floating point decimal format

g Same as ”e” if exponent is greater than -4 or less than precision, ”f” otherwise

G Same as ”E” if exponent is greater than -4 or less than precision, ”F” otherwise

c Single character (accepts integer or single character string)

r String (converts any Python object using repr()1)

s String (converts any Python object using str())

% No argument is converted, results in a ’%’ character in the result

You will note that when printing, we get a lot of decimals for the calculated Q.

There are several ways to control the output format. To format a number for print-

ing or saving to file, we convert it to a string and we can use string format con-

version specifiers to choose between decimal notation, scientific notation, etc., and

also control how many decimals we want to print. In other ways, there are controls

to format the printing of a number. We do this by converting the number into a

string using the str() command. There are several format specifiers that control

the output as shown in Table 2.1. Several examples for formatting of the value of

Q are given below. The general syntax is the format specifier (for instance ’%.4g’

for general with four decimals) followed by a % operator and the variable Q:

>>> p r i n t (s t r (’ %.4g ’ % Q))

0 .08864

>>> p r i n t (s t r (’ %.2 f ’ % Q))

0 . 0 9

>>> p r i n t (s t r (’ %.4 f ’ % Q))

0 .0886

>>> p r i n t (s t r (’ %.2 e ’ % Q))

8 . 8 6 e−02

>>> p r i n t (s t r (’ %.2E ’ % Q))

8 . 8 6E−02

>>> p r i n t (s t r (’ %.4 f ’ % Q))

0 .0886

>>> p r i n t (s t r (’ %.4 i ’ % Q))

1repr(object) returns a string containing a printable representation of an object, i.e. the same value

yielded by conversions (surrounded by reverse quotes)

0000

>>> s t r (’ %0.3 f ’ % Q)

’ 0 .089 ’

>>> s t r (’ %10.3 f ’ % Q)

’ 0 .089 ’

The string formatting operator, % (the percent sign) uses two inputs, i.e. the string

with formatting characters ’%.2E’ and the data Q to be formatted, separated by the

percent sign, thus ’%.4i’ % Q. The number before the dot (.) in the string with

formatting characters specifies the total number of characters to be used, whereas

the number following the dot in the string with formatting characters specifies the

number of decimals (e.g. %5.1f would give a value of five characters (can be filled

by spaces for values lower than 1000) with 1 decimal ’1234.5’ or ’ 34.5’). Note

that the conversion to integer ’(%.4i’ %) of this float gives four zeros due to the .4

in the format specifier (%.4i). Note that the str() statement changes the type of the

variable to string (str) type, in this case from float to str as shown below.

>>> type (Q)

<type ’ f l o a t ’>

>>> type (s t r (’ %.2 f ’ % Q))

<type ’ s t r ’>

>>>

We can also use the str() statement end-format specifiers to format two or more

numbers at a time:

>>> p r i n t (s t r (’ %0.4 f \%.2e ’ % (Q,H)))

0 .0886 3 . 5 0 e−01

2.2.7 Arrays

Most of our hydrological and meteorological data consist of measurements made

over time, such as water level data, sapflow data, conductivity measurements, etc.

With meteorological data collected by our Campbell 21X datalogger, we have one

row of data, such as radiation, temperature, relative humidity, air pressure, etc at

every time interval. In most cases individual data values will be of type float, for

instance a temperature of 27.82 ◦C, or net radiation of 256.9 W m−2. The various

rows and columns of data can be considered an array or matrix, where every row

represents a line of data collected at a certain date and time. This means that this

array would be of the tuple type.

Each value in an array can be accessed by its index numbers. Say that we

define the array t data as an array of 5 rows and 6 columns containing year, day,

time, temperature and temperature variance and standard deviation data:

>>> # Impor t t h e s c i p y module t o work w i t h a r r a y s

>>> from s c i p y import ∗
>>> # Now d e f i n e t h e a r r a y t d a t a

>>> t d a t a = a r r a y ([[2 0 0 7 , 1 2 1 , 1 4 3 5 , 2 2 . 9 5 , . 2 8 7 , . 5 3 6] ,

[2 0 0 7 , 1 2 1 , 1 4 4 0 , 2 2 . 4 5 , . 1 8 8 , . 4 3 4] ,

[2 0 0 7 , 1 2 1 , 1 4 4 5 , 2 1 . 8 4 , . 2 0 7 , . 4 5 5] ,

[2 0 0 7 , 1 2 1 , 1 4 5 0 , 2 1 . 9 0 , . 2 6 5 , . 5 1 4] ,

[2 0 0 7 , 1 2 1 , 1 4 5 5 , 2 2 . 3 4 , . 4 7 6 , . 6 9]])

>>> t d a t a

a r r a y ([[2 .00700000 e +03 , 1.21000000 e +02 , 1.43500000 e +03 ,

2.29500000 e +01 , 2.87000000 e−01 , 5.36000000 e−01] ,

[2 .00700000 e +03 , 1.21000000 e +02 , 1.44000000 e +03 ,

2.24500000 e +01 , 1.88000000 e−01 , 4.34000000 e−01] ,

[2 .00700000 e +03 , 1.21000000 e +02 , 1.44500000 e +03 ,

2.18400000 e +01 , 2.07000000 e−01 , 4.55000000 e−01] ,

[2 .00700000 e +03 , 1.21000000 e +02 , 1.45000000 e +03 ,

2.19000000 e +01 , 2.65000000 e−01 , 5.14000000 e−01] ,

[2 .00700000 e +03 , 1.21000000 e +02 , 1.45500000 e +03 ,

2.23400000 e +01 , 4.76000000 e−01 , 6.90000000 e −01]])

>>>

Each value in a two-dimensional array is identified by indices [x,y], where x rep-

resents the row number and y the column number. The first row and column have

indexes of zero (0). Hence, the upper left value (2007) is t data[0,0], whereas the

lower right value (row 5, column 6, value = 0.69) is t data[4,5].

>>> t d a t a [0 , 0] # f i r s t v a l u e i n a r r a y

2007 .0

>>> t d a t a [4 , 5] # l a s t v a l u e i n a r r a y

0 . 6 9

We can select an entire column or row of data using the colon (:). Say that we

want to assign the fourth column with temperature data to the variable T , then we

would use the statement t = t data[:,3].

>>> t d a t a [: , 3] # f o u r t h column i n a r r a y

a r r a y ([2 2 . 9 5 , 2 2 . 4 5 , 2 1 . 8 4 , 2 1 . 9 , 2 2 . 3 4])

>>> t d a t a [1 , :] # Second row i n a r r a y

a r r a y ([2 .00700000 e +03 , 1.21000000 e +02 , 1.44000000 e +03 ,

2.24500000 e +01 , 1.88000000 e−01 , 4.34000000 e−01])

>>> T = t d a t a [: , 3] # Put t e m p e r a t u r e v a l u e s i n v a r i a b l e T

If we use a minus (-) sign in the index, we start counting from the final rows or

columns of the array. As such t data[-1,-1] gives us the last, lower right value, in

the array (0.69) and t data[:,-2] gives us the column before the last one in the array.

>>> t d a t a [: , −1]

a r r a y ([0 . 5 3 6 , 0 . 4 3 4 , 0 . 4 5 5 , 0 . 5 1 4 , 0 . 6 9])

>>> t d a t a [: , −2]

a r r a y ([0 . 2 8 7 , 0 . 1 8 8 , 0 . 2 0 7 , 0 . 2 6 5 , 0 . 4 7 6])

We can also place a colon (:) before an array index to make more selective

choices. If we want only the first three columns of an array, we can use t data[:,:3]

to select these:

>>> t d a t a [: , : 3]

a r r a y ([[2 0 0 7 . , 1 2 1 . , 1 4 3 5 .] ,

[2 0 0 7 . , 1 2 1 . , 1 4 4 0 .] ,

[2 0 0 7 . , 1 2 1 . , 1 4 4 5 .] ,

[2 0 0 7 . , 1 2 1 . , 1 4 5 0 .] ,

[2 0 0 7 . , 1 2 1 . , 1 4 5 5 .]])

>>>

Using a negative sign will provide everything except the columns/rows counted

from the end of the array. With t data having six columns, we could select only the

first column by:

>>> t d a t a [: , : − 5]

a r r a y ([[2 0 0 7 .] ,

[2 0 0 7 .] ,

[2 0 0 7 .] ,

[2 0 0 7 .] ,

[2 0 0 7 .]])

>>>

Finally, we could also select everything except the first and last columns by:

>>> t d a t a [: , 1 : −1]

a r r a y ([[2 0 0 7 .] ,

[2 0 0 7 .] ,

[2 0 0 7 .] ,

[2 0 0 7 .] ,

[2 0 0 7 .]])

>>>

These tricks are of good use when providing exact index values is difficult because

the size of the array is not known, or changes during program execution.

2.2.8 Combining or splitting arrays of data

It is sometimes necessary to combine two arrays in a single array, for instance if you

have a 1-dimensional array with soil depth, and another array with soil chemical

data. The merging of two arrays is called stacking and can be done using the hstack

or vstack() instructions.

For example, if we wish to add one row to an existing matrix, i.e. stack the

matrices vertically or row on row, we can use vertical stack with the vstack() state-

ment. All arrays in the sequence must have the same shape along all but the first

axis.

The vstack() or hstack() statements take exactly one argument called tup, which

contains the matrices to be stacked. For example, if we have two matrices a and b
of 3 columns, we can stack them as follows with the argument being (a,b):

>>> from s c i p y import ∗
>>> a = a r r a y ([0 , 0 , 0])

>>> b = a r r a y ([[1 , 1 , 1] , [2 , 2 , 2]])

>>> c = v s t a c k ((a , b))

>>> c

a r r a y ([[0 , 0 , 0] ,

[1 , 1 , 1] ,

[2 , 2 , 2]])

Splitting a data array is also possible, using vsplit() or hsplit(). These com-

mands have two arguments, being the array to be slit and the indices or sections

where the split is desired.

You can use vstack() and hstack() statements to rebuild arrays divided by vs-

plit() and hsplit(), respectively.

Assignment

Make three variables a, b and c with respective values of 10.3, 5 and 137.289. Now

calculate:

• a+b+c

• a/b-c

• (b+c)/a

• 2*b+5.1/c+a*15.9

• √
a

• log b

NOTE: The log and square root functions are defined in the math module or the

scipy (scientific python). To access the sqrt() and log() functions you need to load

one of these modules first by executing the following command in IDLE:

>>> from s c i p y import ∗
>>>

Store these commands in the script file that you made earlier. If you run the

script file, no output will be produced. You can produce output using the print

command by specifying

p r i n t a+b+c

p r i n t s q r t (a)

in your script. Please try this for the above calculations...

Now define a variable called dummy that contains an array with two rows of

three values each. The first row is 2.0, 5.6, 3.13 and the second row 17.3, 25.8, 1.6.

• What answers do you get when you type dummy[0,2], dummy[:,0] and dummy[1,:]

in the shell window?

• Which column is selected if you do dummy[:,-1]?

• What data do you select with dummy[:-1,:]?

• What data do you select with dummy[:,:-2]?

• What data do you select with dummy[1:-1,:]?

• Multiply the first column of dummy by 3.0.

• Make a new variable dummy2 that holds the second row of dummy divided

by 2.0

Chapter 3

Python scripts

3.1 What is a script?

Using the command line in Idle to execute statements works fine if we only have

a few commands to give, and we do not have to repeat these often. However, for

some processing tasks, we have many commands that we want to issue in sequence.

In addition, we might like to repeat our calculations on different data at a later time,

or have a web application processing data for publishing on-line. When we start

up IDLE, we open a shell window (Figure reffig:idle), in which we see a >>>
prompt that Idle is ready to receive commands. To make things easier, we could

also collect a sequence of these same commands in a text file, which is then called

a script file. Such a script file serves as a kind of program and always has a name

with a .py extension by convention.

Python scripts are just text files and can therefore be created in any text edi-

tor. However, programming is made easier if the editor recognises Python state-

ments, does automatic indenting and colourises text, such as comments or flow

control text, for clarity. Here we shall use the rather simple built-in Idle editor

window, but an example of using the very versatile JEdit programmer’s text editor

(http://www.jedit.org) for editting script files for different programming languages

is shown in Figure 3.1. To open an editor window in IDLE, choose File > New.

An editor window similar to that in Figure 3.2 will then open.

3.2 Example script

An example of a simple script file listing the sequence of commands to create the

sub-plot in Figure 9.5 is given in Figure 3.2. This script can be run from the editor

by opening the examplescript.py file (Download this file for experimenting with

Python from http://python.hydrology-amsterdam.nl) and then from the menu select

Run > Run module. You will have to type show() in the Idle command window to

display the figure. You now have the basis to start programming in Python.

24

Figure 3.1: JEdit programmer’s text editor showing the formatting for a python

script file.

Figure 3.2: Idle editor window showing example script.

3.3 Debugging

The process of removing errors (bugs) in your script is called debugging. There

are two forms of errors, those that impact the syntax of the code (forgotten :, },

etc.) and those that are syntactically correct but produce wrong output. The latter

ones are usually much more difficult to find. These would include, for instance,

erroneous use of a variable name in an equation or use of wrong unit conversions

(e.g. multiply by 100 instead of 1000). Most program codes contain such errors,

which sometimes only appear under certain conditions, or are never detected at all

because the output seems reasonable.

The Python compiler will stop when an error in the program code syntax is

detected. When you run a script and an error occurs, a message will be displayed

in the Python shell window. The error may have been caused in your script, but

may also be transferred to Pylab, Math, Scipy or other function libraries that you

have imported in your script. When variables or functions have been defined in the

code that has been executed before the error occurred, these will remain available in

memory and can be therefore accessed/used by typing in commands at the prompt

in the shell window. This is very useful for debugging your script, as you can often

detect why a bug occurred by looking at the variables that have loaded.

3.4 Useful snippets of code

When you are using Python regularly, you will often be recycling snippets of code.

A few examples have been given earlier already, such as how to load an ASCII data

file and assign variables to the columns:

Use some o p e r a t i n g s y s t e m and s c i p y r o u t i n e s

from os import c h d i r , getcwd , l i s t d i r

from s c i p y import l o a d t x t

A s s i g n work ing d i r e c t o r y t o v a r i a b l e w o r k d i r

w o r k d i r = ’ i : / s v a e m e t e o / p y s c r i p t s ’

Load data from d a t a f i l e . t x t i n v a r i a b l e da ta

d a t a = l o a d t x t (d a t a f i l e . t x t , comments= ’ # ’ , d e l i m i t e r = ’\ t ’)

A s s i g n f i r s t column t o v a r i a b l e da ta1

d a t a 1 = d a t a [: , 0]

You can use the Run > Run module menu entries in the Idle editor to run

a script. Alternatively, within the Idle shell window, or any other Python shell

window, a script can be executed using the following command:

>>> e x e c f i l e (” s c r i p t . py ”)

A script file can also be executed independently from Idle or Python using the

following command in a terminal window:

watm@pc06−091:˜\ $ python s c r i p t . py

Chapter 4

Program flow control

4.1 Boolean tests

Suppose that we want to know which values in the t data array defined in Sec-

tion 2.2.7 are non-temperatures. We know that temperatures will not become

higher than 50 ◦C, hence we could say that values over 50 ◦C would not be true

temperatures, but erroneous values that would need correction. The conditional

statement t data> 50 would then indicate these values as Boolean types, i.e. True

for those that fulfil the condition and and False for those that do not satisfy the

condition. Below some examples of conditional statements.

>>> # S e t v a r i a b l e a t o 1

>>> a=1

>>> # Check i f a e q u a l s 1

>>> a==1

True

>>> a==2

F a l s e

>>> # Now check t h e t d a t a a r r a y f o r da ta l a r g e r than 50

>>> t d a t a > 5 0 . 0

>>> a r r a y ([[True , True , True , F a l se , F a l se , F a l s e] ,

[True , True , True , F a l se , F a l se , F a l s e] ,

[True , True , True , F a l se , F a l se , F a l s e] ,

[True , True , True , F a l se , F a l se , F a l s e] ,

[True , True , True , F a l se , F a l se , F a l s e]] , d t y p e = bool)

>>>

The following statements use conditional statements to execute some part of

code depending on whether the condition is True or False. Note that the conditional

statement is followed by a colon (:) and that the code to be executed needs to

be indented. The statement continues during indentation and only ends when the

indentation is stopped.

29

4.2 The IF statement

If statements are useful to perform an action based on whether a condition is met

or not. For instance, the code below sets a solar radiation Rs variable at -10.0 W

m−2 and then tests if Rs < 0 W m−2. If the condition is met (true, Rs < 0) it will

set Rs = 0.0 and print a short text and the value of Rs. If not true, it prints ”Solar

radiation larger than or equal to zero.”:

>>> Rs = −10.0

>>> i f Rs < 0 :

Rs = 0 . 0

p r i n t ’ N i g h t t i m e s o l a r r a d i a t i o n = ’ , Rs

e l s e :

p r i n t ’ S o l a r r a d i a t i o n l a r g e r t h a n or e q u a l t o z e r o . ’

Night ime s o l a r r a d i a t i o n = 0 . 0

>>>

Note that the conditional statement Rs<0 is ended with a colon (:). You could

also include elif : statements between the if and else statements to make further

distinctions, for instance for very bright sunlight conditions:

>>> Rs = −10.0

>>> i f Rs < 0 :

Rs = 0 . 0

p r i n t ’ N i g h t t i m e s o l a r r a d i a t i o n = ’ , Rs

e l i f Rs > 1000:

p r i n t ’ Very b r i g h t s u n l i g h t ! ’

e l s e :

p r i n t ’ S o l a r r a d i a t i o n l a r g e r t h a n or e q u a l t o z e r o . ’

Night ime s o l a r r a d i a t i o n = 0 . 0

>>>

4.3 The FOR and WHILE statements

The for or while statements are used to loop through some code. The for loop is a

looping statement that iterates over a sequence of objects. We can create a set of

sequential data using the range() function.

>>> help (range)

Help on b u i l t −in f u n c t i o n range in module b u i l t i n :

range (. . .)

range ([s t a r t ,] s t o p [, s t e p]) −> l i s t of i n t e g e r s

Re turn a l i s t c o n t a i n i n g an a r i t h m e t i c p r o g r e s s i o n

of i n t e g e r s . range (i , j) r e t u r n s [i , i +1 , i +2 , . . . ,

j −1]; s t a r t (!) d e f a u l t s t o 0 . When s t e p i s given ,

i t s p e c i f i e s t h e i n c r e m e n t (or decrement) . For

example , range (4) r e t u r n s [0 , 1 , 2 , 3] . The end

p o i n t i s o m i t t e d ! These a r e e x a c t l y t h e v a l i d

i n d i c e s f o r a l i s t of 4 e l e m e n t s .

>>> range (5)

[0 , 1 , 2 , 3 , 4]

>>>

Now let’s use this in a for loop, the else statement is optional and is executed when

the i becomes outside the defined range:

>>> f o r i in range (1 , 1 0 , 2) :

p r i n t ’ i = ’ , i

e l s e :

p r i n t ’We r e a c h e d t h e end of t h e loop ’

i = 1

i = 3

i = 5

i = 7

i = 9

We r e a c h e d t h e end of t h e loop

>>>

Suppose that we do not want to print these values but store them in a list, together

with a second value that is twice as large as i. We can define a list data type variable

with the statement testlist = []. We would then have to append each line of new

values created in the loop and temporarily stored in the ”dummy” variable to the

list of previous values stored in the variable testlist using a testlist.append(dummy)

instruction. The resulting list can then be converted to an array data type using the

array() function. This can be done as follows:

>>> from s c i p y import ∗
>>> t e s t l i s t = [] # D e f i n e a v a r i a b l e t o s t o r e your v a l u e s

>>> f o r i in range (1 , 10 , 2) :

j = 2 . 0 ∗ i

dummy = i , j

append t h e dummy v a r i a b l e t o p r e v i o u s v a l u e s

t e s t l i s t . append (dummy)

>>> t e s t l i s t

[(1 , 2 . 0) , (3 , 6 . 0) , (5 , 1 0 . 0) , (7 , 1 4 . 0) , (9 , 1 8 . 0)]

>>> t e s t l i s t = a r r a y (t e s t l i s t) # c o n v e r t l i s t o f v a l u e s t o a r r a y

>>> t e s t l i s t

a r r a y ([[1 . , 2 .] ,

[3 . , 6 .] ,

[5 . , 1 0 .] ,

[7 . , 1 4 .] ,

[9 . , 1 8 .]])

>>>

This procedure is very useful for calculating daily averages, sums, standard devia-

tions, etc.

The while is another looping statement that repeatedly executes statements as

long as a condition is true. It can also have an optional ELSE clause. In the

following example we assign a value of 5 to a. In the while statement we increase

a with one and print out the text a is lower than 10 every time an iteration is made.

As you can see below, the loop stops when a reaches 10.

>>> a = 5 # S e t a t o 5

>>> wh i l e a < 1 0 :

p r i n t a , ’ i s l ower t h a n 10 ’

a = a + 1 # I n c r e a s e a by 1

5 i s l ower t h a n 10

6 i s l ower t h a n 10

7 i s l ower t h a n 10

8 i s l ower t h a n 10

9 i s l ower t h a n 10

>>>

The break and continue statements also allow looping but will not be discussed

here.

Chapter 5

Functions in Python

We have already been introduced to the float(), int(), type(), sqrt() and log() func-

tions in the above, but there are many more (predefined) functions in Python. Be-

low are some examples.

5.1 Basic functions

5.1.1 Help() function

An important function is the help() function, that provides you information about

a function. Let’s take the pow() function as an example:

>>> help (pow)

Help on b u i l t −in f u n c t i o n pow in module b u i l t i n :

pow (. . .)

pow (x , y [, z]) −> number

With two arguments , e q u i v a l e n t t o x∗∗y . With t h r e e

arguments , e q u i v a l e n t t o (x∗∗y) \% z , b u t may be

more e f f i c i e n t (e . g . f o r l o n g s) .

>>> pow (3 , 2)

9

>>> 3∗∗2 .0

9 . 0

>>>

This tells you that pow(x,y) will give you x to the power of y (as does x ∗ ∗y)

and that the function is built into Python and in this case returns an integer (9). As

mentioned earlier a lot of functions are defined in function libraries, such as in the

math module (sin(), cos(), tan(), pow() and sqrt() functions, pi, e constants, etc.).

A function library is called a module. The pow() function is also defined in the

33

Figure 5.1: Documentation screen in Spyder that provides explanation of functions

in Python.

module math, that has to be loaded before you can use the power function using

from math import pow, or load all functions in math by using from math import *.

>>> from math import pow

>>> help (pow)

Help on b u i l t −in f u n c t i o n pow in module math :

pow (. . .)

pow (x , y)

Re turn x∗∗y (x t o t h e power of y) .

>>> pow (3 , 2)

9 . 0

>>>

You can see which functions the math module holds by typing in help(math).

In Spyder, there is a separate screen with a tab labelled doc (Figure 5.1) for

documentation, that provides documentation for functions. In addition, next to the

tools menu entry a question mark (?) provides access to addition documentation of

several important Python modules.

Assignment

Consult help for the functions sqrt, log, rand, len and math and write down what

each of these functions does.

5.1.2 Find() function

The find() function is defined in the pylab module, which should be imported be-

fore you can use this function. The find() function returns the indices from an

array where the condition that you use in the function is TRUE. It will do so in

an 1-dimensional array. Remember that we assigned temperature to the variable T
before. Suppose that we want to know when the temperature is higher than 22.0
◦C, we could then issue the following commands:

>>> T

a r r a y ([2 2 . 9 5 , 2 2 . 4 5 , 2 1 . 8 4 , 2 1 . 9 , 2 2 . 3 4])

>>> Thigh = f i n d (T > 2 2 . 0)

>>> Thigh

a r r a y ([0 , 1 , 4])

>>>

This shows you that T[0], T[1] and T[4] satisfy the condition of being larger than

22.0 ◦C. Suppose that we only want these values to be converted to K. We would

then do:

>>> T

a r r a y ([2 2 . 9 5 , 2 2 . 4 5 , 2 1 . 8 4 , 2 1 . 9 , 2 2 . 3 4])

>>> T k e l v i n = T [f i n d (T > 2 2 . 0)] + 273 .16

>>> T k e l v i n

a r r a y ([296 .1 , 295 .6 , 2 9 5 . 4 9])

>>>

The above shows that we can use the find() function within other functions, which

is very useful.

An alternative to find() is to use a condition as an array index. If we want to

find the temperatures after, for instance, 14:45 h, we could do:

>>> # Find t e m p e r a t u r e s f o r t i m e a f t e r 14:45 h

>>> t d a t a [t d a t a [: , 2] >1 4 4 5 , 3]

a r r a y ([2 1 . 9 , 2 2 . 3 4])

>>>

This is often more elegant than using the find() function.

An application would be the following. Suppose that you have measured so-

lar radiation (short-wave) at half-hourly intervals over several days and that you

know that these values should be zero at night, but are sometimes small negative

or positive numbers instead. If you would like to set values of Rs smaller than 5

W m−1 to zero, you could do the following, where the Rs variable holds an array

of half-hourly solar radiation values:

>>> Rs [Rs<5]=0

or

>>> Rs [f i n d (Rs<5)]=0

5.1.3 Mod() and floor() functions

Sometimes there is the need to separate the decimal part from the integer part of

a number. One such example is the conversion of data logger time, stored as year,

day of year and hour (2008, 157, 1430), to a decimal time that is needed for plotting

of the data.

The floor() function in the math module will return the integer part of a number,

i.e. the largest integer value less than or equal to that number, whereas the mod()

in the scipy module returns the modulo, i.e. the decimal part. The mod() function

takes two arguments, the number (n) and a divisor (d). Mod(n,d) returns the dif-

ference between n and the largest multiple of d smaller than n. With a divisor d
of 1, mod(n,1) will return the decimal part of the number n. You can also use the

modulo operator (%) instead of the mod() function. :

>>> from math import f l o o r

>>> from s c i p y import mod

>>> f l o o r (3 . 5)

3 . 0

>>> mod (3 . 5 , 1)

0 . 5

>>> 3 . 5 % 1

0 . 5

>>>

5.1.4 Range functions

Ranges of values can be created using the range(), arange() and the linspace()

functions. The range() function creates a list type, whereas the arange() function

creates an array of integers and linspace() function an array of float values:

>>> x=range (0 , 10)

>>> x

[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9]

>>> type (x)

<type ’ l i s t ’>

>>> y = a r a n g e (0 , 10)

>>> y

a r r a y ([0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9])

>>> type (y)

<type ’ numpy . n d a r r a y ’>

>>> z = l i n s p a c e (1 , 6 , 5)

>>> z

a r r a y ([1 . , 2 . 2 5 , 3 . 5 , 4 . 7 5 , 6 .])

>>> type (z)

<type ’numpy . n d a r r a y ’>

>>>

You can also use a third, additional argument in the range() and arange() functions

to influence the steps:

>>> x= a r a n g e (0 , 10 , 2)

>>> x

a r r a y ([0 , 2 , 4 , 6 , 8])

>>>

5.2 Statistical functions

We often need to describe the statistics of our dataset. We can use the average(),

std(), sum() max() and min() functions to get the average, standard deviation, sum,

maximum and minimum values, respectively. These functions are defined in the

module scipy so you have to import this module first. Let’s do this for the variable

T again.

>>> from s c i p y import ∗
>>> a v e r a g e (T)

22.295999999999999

>>> s t d (T)

0.40450463532572778

>>> sum (T)

111.47999999999999

>>> max (T)

22.949999999999999

>>> min (T)

21 .84

>>>

It is also possible to do linear regression using the polyfit() function from the

scipy module. The polyfit() function is based on least-square analysis and takes

three arguments, x-data, y-data and a number n describing the polynomial order

(1 = linear regression, 2 = quadratic, 3 = cubic, etc.). In the linear case (y =
ax + b) it returns two coefficients, the slope a and the intercept b. You call the

function for linear analyses as: a,b = polyfit(xdata,ydata,1). This function will not

provide you with any further statistics. If you need such detailed statistics (r2, F-

test, etc.) then you could download and use the module ols.py, which you can get

at http://www.scipy.org/Cookbook/OLS.

5.3 Meteorological and hydrological functions

We have defined several meteorological functions and evaporation formulae in

the meteolib.py and evaplib.py modules. You can download these modules from

http://python.hydrology-amsterdam.nl/.

5.3.1 General meteorological functions: meteolib.py

The following functions are defined in meteolib.py:

• date2doy(): converts a date (dd, mm, yyyy) to a ”day of year” (1-366) value.

• sun NR(): calculates daylength and extraterrestrial radiation input, used for

calculating evaporation

• es calc(): Calculate saturation vapour pressures

• ea calc(): Calculate actual vapour pressures

• vpd calc(): Calculate vapour pressure deficits

• Delta calc(): Calculate slope of vapour pressure curve

• L calc(): Calculate latent heat of vapourisation

• cp calc(): Calculate specific heat

• gamma calc(): Calculate psychrometric constant

• rho calc(): Calculate air density

• pottemp(): Calculate potential temperature (1000 hPa reference pressure)

The latent heat of vapourisation (λ) depends only on temperature. To calculate λ
from temperature variable T we would do:

>>> from m e t e o l i b import ∗
>>> L = L c a l c (T)

>>> L

a r r a y ([2445736.025975 , 2446919.4761 , 2448363 .2852525 ,

2448221 .2712375 , 2447179 .8 3 5 1 2 75])

>>>

Use the help() function to get information about the other functions in the meteolib

module.

5.3.2 Evaporation functions: evaplib.py

A second library, evaplib.py was developped by M.J. Waterloo and contains func-

tions to calculate daily evaporation rates according to the Penman open water

evaporation [E0(); Penman, 1948, 1956, 1963, Valiantzas, 2006], the FAO Penman

Monteith reference evaporation [ET0pm(); Allen et al., 1998], the Dutch Makkink

reference crop evaporation [Em(); de Bruin, 1987] and the Priestley Taylor evapo-

ration [Ept(); Priestley and Taylor, 1972]. The following statement calculates the

Priestley Taylor evaporation for a temperature of 21.65 ◦C, a relative humidity of

67%, air pressure of 101300 Pa, net radiation input of 18200000 J m−2 day−1 and

a soil heat flux of 600000 J m−2 day−1 .

>>> from e v a p l i b import ∗
>>> Ept (2 1 . 6 5 , 6 7 . 0 , 1 0 1 3 0 0 , 1 8 2 0 0 0 0 0 , 6 0 0 0 0 0)

6.3494561161280778

>>>

The evaplib.py library can be downloaded from ecohydro.falw.vu.nl.

5.4 Defining your own functions

If you need to execute several statements or calculations more than once, it may be

a good idea to define your own function. You can define two types of functions in

Python. The first type is named and is defined using the def – return keywords. You

can store these function scripts in a function module from which you can import

these for repeated use within a second script. The second type are anonymous

functions, called lambda functions. Both function types will be discussed below.

5.4.1 Defining a named function

The definition of a traditional named function starts with the def statement fol-

lowed by the function name and, optionally between parenthesis, a list of its argu-

ments called the function argument list. The arguments are any input values that

you want to pass on to the function. For example, lets define a function linreser-

voir(). The discharge recession can often be described by the following equation:

Qt = Q0e
−

1

k
t (5.1)

Now suppose that you want to calculate Qt, for which you would need Q0, k and

t as the functions arguments. You could then define the function linreservoir()

as follows, where we import the exponential function from the scipy within the

function and we state in the function argument list that Q0 and k are of type float:

d ef l i n r e s e r v o i r (q0 = f l o a t () , k = f l o a t () , t) :

from s c i p y import exp # i m p o r t e x p o n e n t i a l f u n c t i o n

q t = q0 ∗ exp(−1 / k ∗ t)

re tu rn q t

Note that the function statements are all indented and that the final statement (return

qt) provides output of the function. If we save this function in a script file called

linres.py, we can import the function linreservoir() as follows:

>>> from l i n r e s import l i n r e s e r v o i r

>>> l i n r e s e r v o i r (1 0 0 . 0 , 3 0 . 0 , 67)

10.717059875230674

>>>

The above works only with single values as input. If you want to work with arrays

of time values as input, you can specify this in the function argument list:

i m p o r t modules

from s c i p y import a r r a y

d ef l i n r e s e r v o i r (q0= f l o a t () , k= f l o a t () , t = a r r a y ([])) :

from s c i p y import exp

q t = q0 ∗ exp(−1 / k ∗ t)

re tu rn q t

If we now use the function with t as an array, we als get an array of qt as output:

>>> t = a r r a y ([1 , 2 , 3 , 4])

>>> t

a r r a y ([1 , 2 , 3 , 4])

>>> q = l i n r e s e r v o i r (1 0 0 . 0 , 5 0 . 0 , t)

>>> q

a r r a y ([98 .01986733 , 96 .07894392 , 94 .17645336 , 9 2 . 3 1 1 6 3 4 6 4])

>>>

It is always very important to document your programs well so that other people

may use or modify them. The first thing that springs to mind is adding a help

entry text in your function. This means that if you would type help(linreservoir)

it would show you how to use the function and what its inputs and outputs are.

Adding a help entry is easy. Just insert the help text as a multi-line comment after

the function definition, as shown by the example below.

i m p o r t modules

from s c i p y import a r r a y

d ef l i n r e s e r v o i r (f l o a t (q0) , f l o a t (k) , t = a r r a y ([])) :

’ ’ ’ The f u n c t i o n l i n r e s e r v o i r () c a l c u l a t e s t h e

d i s c h a r g e a t t ime t from an i n i t i a l

d i s c h a r g e Q(t =0) and a r e c e s s i o n

c o n s t a n t

I n p u t :

−−−−−−−−−
t : (a r r a y of) t ime

q0 : i n i t i a l d i s c h a r g e v a l u e

k : r e c e s s i o n c o n s t a n

Outpu t :

−−−−−−−−−
q t : (a r r a y of) d i s c h a r g e v a l u e s a t t ime t

Example :

−−−−−−−−−
>>> l i n r e s e r v o i r (1 5 . 0 , 3 0 . 0 , 20)

2.6359713811572676

’ ’ ’

Impor t r e l e v a n t Python modules

from s c i p y import exp

Do t h e c a l c u l a t i o n s

q t = q0 ∗ exp(−1 / k ∗ t)

re tu rn q t

If we now invoke the help function (e.g. help(linreservoir)) we get the following

output with our help text:

>>> help (l i n r e s e r v o i r)

Help on f u n c t i o n l i n r e s e r v o i r in module m a i n :

l i n r e s e r v o i r (q0 = 0 . 0 , k = 0 . 0 , t = a r r a y ([] , d t y p e = f l o a t 6 4))

The f u n c t i o n l i n r e s e r v o i r () c a l c u l a t e s t h e

d i s c h a r g e a t t ime t from an i n i t i a l

d i s c h a r g e Q(t =0) and a r e c e s s i o n c o n s t a n t

I n p u t :

−−−−−−−−−
t : t ime

q0 : i n i t i a l d i s c h a r g e v a l u e

k : r e c e s s i o n c o n s t a n t

Outpu t :

−−−−−−−−−
q t : d i s c h a r g e a t t ime t

Examples :

−−−−−−−−−
>>> l i n r e s e r v o i r (1 5 . 0 , 3 0 . 0 , 20)

7.70125678548888

>>>

Many meteorological functions are defined like this in the meteolib and evaplib

modules (see Sections 5.3.1 and 5.3.2).

5.4.2 Lambda functions

In contrast to the named functions, lambda functions are anonymous functions that

are not attached to a name during runtime of your script. They are defined as

follows using the lambda construct where the function outputs the argument (x) to

the power 3:

>>> power3 = lambda x : x∗∗3

>>> power3

<f u n c t i o n <lambda> a t 0 xb9f0ca4>

>>> power3 (3)

27

>>>

You can use more than one argument in a lambda function:

>>> powerxy = lambda x , y : x∗∗3 + y∗∗2

>>> powerxy (3 , 4)

43

>>>

These lambda functions can be part of named functions.

Chapter 6

Object oriented programming in

Python – Classes

In the previous chapters you have learned the basics of Python. This included data

types, use of variables and function definitions that combined in a script form a

program that can be used to perform certain actions. In many computer models,

parts of code are implemented with minor changes at different places in the pro-

gram. This implies that if such a part of code is changed or used differently, the

change in function code should be implemented in different places in the program,

making it subject to errors. It is much more efficient to develop code as an object

in one place, that serves as a recipe use elsewhere in the program. A computer

language that can do this, such as Python, is called an object-oriented language.

For instance, if you want to develop a program that defines functions for soils,

you have to deal with differences between soil types, such as for example course

grained, clay and peat soils. If you have very simple functions you could use a

dictionary data type (Section 2.2.5) to achieve this:

>>> s o i l t y p e = { ’ c o u r s e ’ : ’ e x e c u t e program code f o r c o u r s e s o i l s ’ ,\
’ c l a y ’ : ’ e x e c u t e program code f o r c l a y s o i l s ’ ,\
’ p e a t ’ : ’ e x e c u t e program code f o r p e a t s o i l s ’ ,\
}

>>> s o i l t y p e . g e t (’ p e a t ’ , ’ s o i l t y p e unknown ’)

’ e x e c u t e program code f o r p e a t s o i l s ’

>>> s o i l t y p e . g e t (’ s i l t ’ , ’ s o i l t y p e unknown ’)

’ s o i l t y p e unknown ’

>>>

You could also achieve the same using if – elif –else statements (Section 4.2)

that would select the appropriate function code:

>>> s o i l = ’ sand ’

>>> i f s o i l == ’ c o u r s e ’ :

p r i n t ’ e x e c u t e f u n c t i o n code f o r c o u r s e s o i l s ’

e l i f s o i l == ’ c l a y ’ :

43

p r i n t ’ e x e c u t e f u n c t i o n code f o r c l a y s o i l s ’

e l i f s o i l == ’ p e a t ’ :

p r i n t ’ e x e c u t e f u n c t i o n code f o r p e a t s o i l s ’

e l s e :

p r i n t ’ unknown s o i l t y p e ’

unknown s o i l type

>>>

It is very likely that the functions used for these different soils show similarity and

you therefore have to edit three functions if you make modifications.

Object oriented programming makes it possible to develop a kind of general

recipe or prototype for a set of functions that can have several instances with dif-

ferent functioning, i.e. for each of the soil types, in your program. This recipe can

contain constants, variables and functions. The latter are then called the methods

of the object.

A prototype of an object can be created in Python by defining a Class type.

Such a class type contains variables, properties and methods that characterize the

objects of the class. The attributes of a class are called data members and meth-

ods that can be accessed through a . (dot) notation. For instance if a class is

constructed with the name of address, address.street might show the street name

variable, whereas address.city would yield the name of the city.

Below is a simple program using a soil() class with two functions for calculat-

ing arbitrary soil values K and H:

’ ’ ’ T h i s i s a c l a s s f o r h a n d l i n g s o i l d a t a

An i n s t a n c e of t h i s c l a s s can be c r e a t e d by c a l l i n g s o i l (C) ,

where C i s a c o n s t a n t used i n t h e c a l c u l a t i o n s . C v a r i e s

between s o i l t y p e s .

W r i t t e n by M. J . W ate r loo as an example .

’ ’ ’

c l a s s s o i l (o b j e c t) :

D e f i n e an i n i t i a l v a r i a b l e t h a t i s r e l a t e d t o each c l a s s

i n s t a n c e

d ef i n i t (s e l f , C) :

Get a c o n s t a n t C f o r each c l a s s i n s t a n c e c r e a t e d

s e l f . C = C

d ef calcK (s e l f , t h e t a) :

C a l c u l a t e a K v a r i a b l e a c c o r d i n g t o m o i s t u r e s t a t u s

t h e t a (0−1) and t h e c o n s t a n t C

K = 1 / t h e t a ∗ s e l f . C

re tu rn K

d ef calcH (s e l f , t h e t a) :

C a l c u l a t e water p r e s s u r e based on s o i l m o i s t u r e t h e t a

H = s e l f . C / t h e t a ∗ 100

re tu rn H

Make s e v e r a l i n s t a n c e s o f t h e c l a s s f o r each s o i l t ype , n o t e

t h a t C v a r i e s

c l a y = s o i l (0 . 0 5)

sand = s o i l (0 . 7)

C a l c u l a t e s o i l p r o p e r t i e s K and H

k c l a y = c l a y . calcK (0 . 4)

ksand = sand . calcK (0 . 4)

p r i n t ’K f o r c l a y a t t h e t a = 0 . 4 i s : ’ , k c l a y

p r i n t ’K f o r sand a t t h e t a = 0 . 4 i s : ’ , ksand

In the above first a soil() class and functions in the class are defined, where def

init (self,C): is done when the instance of the soil class is initiated. In this case

C varies between soil types and is used to calculate K and H based on a θ input

variable. Then an instance of soil is made for clay with C = 0.05 by calling clay

= soil(0.05) (and also for sand with a different C value) and K is calculated for

θ = 0.4. The same is done for sand. When we run the script we get:

>>>

K f o r c l a y a t t h e t a = 0 . 4 i s : 0 . 125

K f o r sand a t t h e t a = 0 . 4 i s : 1 . 7 5

>>>

Note that the outcome differs between soil types for the same value of θ. We could

now easily add an instance for peat by including:

p e a t = s o i l (0 . 1)

We then have three instances, one for each soil type, that we can call to calculate

corresponding K values.

Chapter 7

File and directory manipulations

7.1 Directory manipulations

When you start you have to create a directory to work in. Please create a directory

called svae python on one of the drives of your computer. Now start Python by

opening Idle. To change change your working directory you have to import the OS

module first. The OS (Miscellaneous operating system interfaces) module contains

functions that pertain to commands for your operating system, such as changing

directories, making directories, listing files, etc. Some examples are given below.

To import this module type on the command prompt:

>>> import os

>>>

Now you can use the os.getcwd() function to see where you are (/home/watm is my

home directory under unix):

>>> os . getcwd ()

’ / home / watm ’

>>>

You can change to another directory using the os.chdir() function. To change to an-

other directory use the os.chdir() command, for instance type os.chdir(’C:\svae python’)

in MS Windows, or if you work under unix os.chdir(’/home/watm/svae python’).

It is often easy to define a variable, for instance called ”dataroot”, holding the name

of your working directory. For unix:

>>> d a t a r o o t = ’ / home / watm / s v a e p y t h o n ’

>>> os . c h d i r (d a t a r o o t)

>>> os . getcwd ()

’ / home / watm / s v a e p y t h o n ’

>>>

46

or in MS windows:

>>> d a t a r o o t = ’ c :\ s v a e p y t h o n ’

>>> os . c h d i r (d a t a r o o t)

>>> os . getcwd ()

’ c :\ s v a e p y t h o n ’

>>>

To list all files in the current working directory use os.listdir(os.getcwd()):

>>> os . l i s t d i r (os . getcwd ())

[’ m e t e o l i b . py ’ , ’ meteo2008 . t x t ’ , ’ m e t e o s c r i p t . py ’]

>>>

If you have a long directory path and file name, such as /home/watm/svae python/data.txt

the os.path module provides possibilities to split or join these paths and file names

or file name extensions. For instance, if you have the variable /home/watm/s-

vae python/data.txt and you want to separate the filename from the directory path,

you can do:

>>> import os

>>> pathname , f i l e n a m e = os . p a t h . s p l i t (’ / home / watm / s v a e p y t h o n / d a t a .

t x t ’)

>>> pathname

’ / home / watm / s v a e p y t h o n ’

>>> f i l e n a m e

’ d a t a . t x t ’

>>>

If you want to split the path (/home/watm/svae python), file name (data) and its

extension you could use os.path.splitext()

>>>p a t h f i l e n a m e , extname=os . p a t h . s p l i t e x t (’ / home / watm / s v a e p y t h o n /

d a t a . t x t ’)

>>> p a t h f i l e n a m e

’ / home / watm / s v a e p y t h o n / d a t a ’

>>> extname

’ . t x t ’

>>>

These commands are very useful for in case you want to place files in a different

directory than where these were originally, or to change file names.

Assignment

Based on the above, add a few lines of program code to your personal script file

that sets your working directory and gives a list of the files in this directory.

7.2 Working with ASCII data files

7.2.1 Reading data from file with loadtxt()

Often we get our data from automatic data registration units, or data loggers. These

data loggers store the values from the instruments attached to them in an ACSCII

or text file. The values in this file are separated by a delimiter, which usually is

a space (), a tab () or a comma (,). The latter file is often called a comma

separated values file and has .csv as its file name extension. Comments in such

files are often preceded by the pound (#) symbol. Output for a VU water level data

logger is, for example:

DOY day month year hr min s e c H

124 04 05 09 10 15 30 +00002

124 04 05 09 10 30 30 −00005

124 04 05 09 10 45 30 −00010

124 04 05 09 11 00 30 −00020

The data on the first line represents the day of year (124, doy), day (04), month

(05), year (09), hour (10), minutes (15), seconds (30) and the water level in 1/100
of a cm (+00002). Note that all values are separated by spaces.

If these data were stored in a file called wl.txt, we can read these into an array

variable (here called wldata) using the loadtxt() function that is defined in the scipy

(Scientific Python) or pylab modules:

>>> from s c i p y import l o a d t x t

>>> w l d a t a = l o a d t x t (’ wl . t x t ’ , comments= ’ # ’ , d e l i m i t e r = ’ ’)

>>>

Note that you cannot have missing values in the file, so every column must have

the same length and you should not have empty lines at the end of the file. If you

have missing data in one or more columns, you could fill these locations first with

-9999, a value commonly used to indicate missing data. Now we have an array in

which the different columns are stored. The first header lines (#) was skipped due

to the comments=’#’ argument in the loadtxt() function. The first column of the

array (wldata[:,0]) holds the DOY, and the last column (wldata[:,7]) the water level

data. You can now perform calculations with the data:

>>> wl = []

>>> wl = w l d a t a [: , 7] / 1 0 0 0 0 . 0

The water level is now stored in the variable wl and its unit is now m, rather than

in tenths of a mm.

Assignment

1. Use the loadtxt() function (defined in the pylab or scipy modules) to read

the file wl.txt (available at http://ecohydro.falw.vu.nl/python) and place the

data in a variable named wldata. Note that the first line in wl.txt contains a

comment with the header for each column.

2. Now assign each column in wldata to individual variables as defined in the

header, i.e. JD, DD, MM, etc.

3. Calculate the average value of your variable H (the water level)

4. Select all H values after day 160

5. The actual water level H was 0.31 m at the beginning of the measurements

when the logger H was set to zero and the logger H values are in 0.1mm units.

Correct H so that it represents the water level in m.

The Campbell Scientific CR1000 data logger that we use for our meteorologi-

cal measurements stores data differently than the VU water level data logger. Here

is an example of the data output of the logger:

”TOA5” , ” MyDatalogger ” , ”CR1000” , ” E3686 ” , ”CR1000 . S td . 2 7 ” , ”CPU:

c r 1 0 0 0 m e t e r o l o g y v 1 . 1 2 P o r t u g a l 2 0 1 4 . CR1” , ” 28966 ” , ” f a s t t a b l e

”

”TIMESTAMP” , ”RECORD” , ”AvgTCa” , ” s tdTCa ”

”TS” , ”RN” , ”Deg C” , ”Deg C”

” ” , ” ” , ”Avg” , ” S td ”

”2014−06−05 1 5 : 0 5 : 0 0 ” , 0 1 , ”NAN” , ”NAN”

”2014−06−05 1 5 : 1 0 : 0 0 ” , 0 2 , ”NAN” , ”NAN”

”2014−06−05 1 5 : 1 5 : 0 0 ” , 0 3 , 2 7 . 0 1 , 1 . 7 9 8

”2014−06−05 1 5 : 2 0 : 0 0 ” , 0 4 , 2 4 . 2 5 , 0 . 9 8

We see that it is a comma separated values (csv) file, the first few lines iden-

tify the logger and the meaning of the data in the four columns (”TIMESTAMP”,

”RECORD”, ”AvgTCa”, ”stdTCa”), their units, etc., followed by data lines, which

all start with a date string (”2014-06-05 15:05:00”), float values (27.01) and in

some cases ”NAN”, which is the abbreviation for Not A Number for when the

sensor had not yet been connected.

If you use the loadtxt() function as above, it will give you an error telling you

that it can only read float values. As such we have to extend loadtxt() arguments to

tell it:

1. that we should skip the first four lines of the file because these contain a

header with text

2. that the first column should be translated to a date

3. that if it encounters ”NAN” it should convert it to a number indicating miss-

ing values, usually -9999.

Loadtxt() has different arguments to do this. To skip the first four lines we use

the skiprows argument in loadtxt():

>>> from s c i p y import l o a d t x t

>>> d a t a = l o a d t x t (’ f i l e n a m e . d a t ’ ,\
comments= ’ # ’ ,\
d e l i m i t e r = ’ , ’ ,\
s k i p r o w s =4)

>>>

Loadtxt() also has an argument to translate certain input it reads to a different

output. In this case, we want to convert the date string in the first column (column

0) to a date number that Python can use for plotting. This is done with the loadtxt()

converters= argument that we apply to column 0 and telling it what format the date

string is (”%Y-%m-%d %H:%M:%S”) and how to translate it using the matplotlib

strpdate2num() function.

from m a t p l o t l i b . d a t e s import s t r p d a t e 2 n u m # m a t p l o t l i b d a t e

f u n c t i o n

m e t e o d a t a = l o a d t x t (’ f i l e n a m e . d a t ’ ,\
comments= ’ # ’ ,\
d e l i m i t e r = ’ , ’ ,\
s k i p r o w s =4 ,

c o n v e r t e r s = {0: s t r p d a t e 2 n u m (’\”%Y−%m−%d %H:%M

:%S\” ’) }\
)

Finally we have to make sure that the ”NAN” values are converted to indicate

missing values (-9999).

7.2.2 Reading data from file with genfromtxt()

The genfromtxt() function in the scipy is a more versatile alternative for scipy.loadtxt()

for importing data from a text file.

Suppose that we are working with an HBV model input file ptq.txt, which is

an ASCII text file that starts with a 2-line header followed by input data in four

tab-separated columns being a date, precipitation P , temperature T and discharge

Q:

Dinke l c a t c h m e n t 1976−2010

Date P T Q

19760101 9 . 4 3 . 7 0 .260

19760102 1 6 . 7 4 . 3 0 .430

19760103 1 3 . 3 5 . 0 1 .418

19760104 4 . 3 2 . 0 1 .625

19760105 1 . 3 5 . 1 1 .708

19760106 1 5 . 9 3 . 7 1 .739

19760107 0 . 3 7 . 5 1 .875

19760108 0 . 1 6 . 5 NaN

19760109 0 . 0 6 . 9 1 .668

We could read the file as follows:

import s c i p y

import m a t p l o t l i b . d a t e s

kwargs= d i c t (d e l i m i t e r = ’\ t ’ ,\
d e l e t e c h a r s = ’ ’ ,\
c o n v e r t e r s = {0: m a t p l o t l i b . d a t e s . s t r p d a t e 2 n u m (’%Y%m%d ’) } ,\
s k i p h e a d e r =1 ,\
names=True ,\
s k i p f o o t e r =0 ,\
f i l l i n g v a l u e s =−9999 ,\
m i s s i n g v a l u e s ={ ’ \”NaN\” ’}\
)

p t q d a t a = s c i p y . g e n f r o m t x t (d a t a f i l e , ∗∗ kwargs)

We have first stored the arguments for scipy.genfromtxt in the kwargs dict dic-

tionary data container type variable (Section 2.2.5) that can store keys and their

corresponding values (e.g. delimiter=’,’). The converters key is used to convert

the date to a matplotlib.dates date object (pylab numerical date value) and missing

values are identified as NaN (Not a Number).

In the statement scipy.genfromtxt(datafile, **kwargs) statement point to the

previously declared kwargs dictionary using **. We have seen in Section 2.2.3

that the ** operator is used as a power operator (x**4 raises x to the power of

four), but now ** is used for keyword argument unpacking. In this statement **

therefore unpacks the kwargs dictionary into separate keyword options as defined

in the kwargs dict() statement. Note that a singe ** before a variable (e.g. *args)

would mean argument unpacking. So both * and ** are used to unpack data struc-

tures (e.g. lists of arguments or keywords) of the arguments that these precede.

Executing the above statements gives:

>>> p t q d a t a

a r r a y ([(7 2 1 3 5 4 . 0 , 9 . 4 , 3 . 7 , 0 . 2 6) , (7 2 1 3 5 5 . 0 , 1 6 . 7 , 4 . 3 , 0 . 4 3) ,

(7 2 1 3 5 6 . 0 , 1 3 . 3 , 5 . 0 , 1 . 4 1 8) , . . . , (7 3 3 9 8 3 . 0 , 8 . 7 , 1 7 . 2 ,

nan) ,

(7 3 3 9 8 4 . 0 , 0 . 0 , 1 9 . 5 , nan) , (7 3 3 9 8 5 . 0 , 0 . 1 , 1 9 . 3 , nan)] ,

d t y p e = [(’ Date ’ , ’<f8 ’) , (’P ’ , ’<f8 ’) , (’T ’ , ’<f8 ’) , (’Q’ , ’<

f8 ’)])

>>>

The data is now in a ndarray with formats according to dtype and we can address,

for instance, the entire date column, the first date value only, and the fifth T value

by:

>>> p t q d a t a [’ Date ’]

a r r a y ([7 2 1 3 5 4 . , 7 2 1 3 5 5 . , 7 2 1 3 5 6 . , . . . , 7 3 3 9 8 3 . , 7 3 3 9 8 4 . ,

7 3 3 9 8 5 .])

>>> p t q d a t a [’ Date ’] [0]

721354 .0

>>> p t q d a t a [’T ’] [4]

5.0999999999999996

>>>

7.2.3 Saving Python variables to file

Suppose that we have one or more variables that we would like to save in files,

such as calculated daily evaporation rates. Python allows saving such variables

to an ASCII text file using the open() function to open a text file and the close()

function after we have written the data. The following example opens the file

d:/mydata/asu pe.txt, as defined in the variable pe outfile for writing (’w’), then

writes two lines with comments starting with the # character and ending with a

newline (\n). Then we create single line lists (filelist=[]) in which we append the

day number dayno[n], a tab (filelist.append(’\t’)), sum of rainfall (dsumP[n]) as a

string number with format xxxxx.xx (’%5.2f’ %), then another tab and the evapo-

ration E0[n]. These are written to the file with fileout.writelines(filelist). When all

the lines have been written (n = len(dayno)) we close the file with fileout.close().

The len() function provides the length of a string, list or array as a number. In this

case it provides the number of rows in the dayno variable.

p e o u t f i l e = ’ d : / mydata / a s u p e . t x t ’

f i l e o u t = open (p e o u t f i l e , ’w’)

f i l e o u t . w r i t e (’ # C u i e i r a s Reserve , Manaus\n ’)

f i l e o u t . w r i t e (’ # Date , R a i n f a l l [mm] , Penman E0 [mm]\ n ’)

f o r i in range (0 , l e n (dayno)) :

f i l e l i s t = []

f i l e l i s t . append (s t r (i n t (dayno [i])))

f i l e l i s t . append (’\ t ’)

f i l e l i s t . append (s t r (’ %5.2 f ’ % f l o a t (dsumP [i])))

f i l e l i s t . append (’\ t ’)

f i l e l i s t . append (s t r (’ %5.2 f ’ % f l o a t (E0 [i])))

f i l e l i s t . append (’\n ’)

f i l e o u t . w r i t e l i n e s (f i l e l i s t)

f i l e o u t . c l o s e ()

Assignment

Save the variables from wldata, with the corrected H value, in a text file named

wlm.txt.

7.3 Working with NetCDF files

Network Common Data Form (netCDF) machine-independent binary data format,

with software libraries that support the creation, access, and sharing of array-

oriented scientific data. The format is maintained by the University Corporation

for Atmospheric Research (UCAR) and is often used for storing scientific data in

a uniform way.

Python knows various software libraries (modules) that have commands to cre-

ate and access data stored in this format. One of these is PyNIO (http://www.pyngl .ucar.edu/Nio.shtml),

developed by NCAR’s Computational and Information Systems Laboratory, which

also reads other common formats (GRIB, HDF, etc.). There is also a visualisation

module (PyNGL).

An alternative is the netcdf4-python module, which has recently been inte-

grated in Python(x,y). To make a new NetCDF file you can use the Dataset()

function and variables can be added to the file and accessed using the createVari-

able() function, where the time variable in the example below is a one-dimensional

array of values (1 column) of type float:

>>> from netCDF4 import D a t a s e t

>>> t e s t c d f f i l e = D a t a s e t (’ t e s t . nc ’ , ’w’ , format= ’NETCDF4 ’)

>>> p r i n t t e s t c d f f i l e . f i l e f o r m a t

NETCDF4

>>> t i m e s = t e s t c d f f i l e . c r e a t e V a r i a b l e (’ t ime ’ , ’ f8 ’ , (’ t ime ’ ,))

>>> t e s t c d f f i l e . c l o s e () # Close t h e f i l e

Consult the netcdf4-python documentation for more information.

A simple library with netCDF functions has been developed by Ko van Huisst-

eden and is available at http://ecohydro.falw.vu.nl/python.

Chapter 8

Working with dates and times

In hydrology we often work with time series. The datetime module provides the

tools to conveniently work with dates and times. Detailed information about the

functions in the datetime module is given in http://docs.python.org/library/datetime.html.

We have to import the module first. If we need the current date or date and time

we can do this using the datetime.date() and datetime.now() functions:

>>> from d a t e t i m e import ∗
>>> d a t e . t o d a y ()

d a t e t i m e . d a t e (2009 , 6 , 1)

>>> d a t e t i m e . now ()

d a t e t i m e . d a t e t i m e (2009 , 6 , 1 , 16 , 54 , 44 , 395137)

In the above example, the year (2009) is followed by the month (6), day (1), hour

(16), minutes (54), seconds (44) and microseconds (395137). We can also have an

ordinal value of the date, which in Python is the number of days since 01-01-0001.

For the first of June 2009 this would be:

>>> d a t e . t o o r d i n a l (d a t e . t o d a y ())

733559

>>>d a t e . f r o m o r d i n a l (733559)

d a t e t i m e . d a t e (2009 , 6 , 1)

We often have data where the year, month, day, and perhaps time (in hour, min-

utes, seconds) are provided in separate columns (e.g. 2009 10 29 15 31 03). There

are several ways to get the day of year (doy, 1–366) from these date values. The

first one is to use the date2doy() function that is defined in the meteolib function

library. For instance if we have a number of rows with year (YYYY), month (MM)

and day of month (DD) values, we could call the following to assign day of year

values to the variable doy:

doy= da t e2doy (YYYY,MM,DD)

54

We can also use the datetime module to combine these date values into a date-

time object using the following code, where the year is again given in the variable

YYYY, the month as MM and the day as DD.

>>> import d a t e t i m e

>>>YYYY=2000

>>>MM=9

>>>DD=18

>>>datum = d a t e t i m e . d a t e (YYYY,MM,DD)

>>>datum

d a t e t i m e . d a t e (2000 , 9 , 18)

With the function strftime() we can now convert these dates to other values, such

as the day of year as a decimal number (doy, 0-366, %j format), the week number

(%U), weekday as a decimal number (%w, 0 (Sunday) – 6), etc. This is shown

below:

>>>datum . s t r f t i m e (’%j ’)

’ 262 ’

>>> datum . s t r f t i m e (’%U’)

’ 38 ’

>>> datum . s t r f t i m e (’%w’)

’ 1 ’

So let’s do something useful. This script reads in a file with three columns con-

taining the year, month and day of the month. It then creates a datetime object that

is stored in an array called alldata and converts the date to the day of year using

the strftime() function. We use the int to convert the string that results from the

strftime() function to an integer doy number. We use append to add data to the end

of the arrays.

>>>from s c i p y import l o a d t x t

>>>import d a t e t i m e

>>>d a t a f i l e = ’ t e s t . t x t ’

>>># D e f i n e d e l i m i t e r

>>>d e l i m i t e r = ’ , ’

>>># Load data from f i l e

>>>d a t a = l o a d t x t (d a t a f i l e , comments= ’ # ’ , d e l i m i t e r = d e l i m i t e r)

>>># P lace each column i n i t s own v a r i a b l e

>>>YYYY= d a t a [: , 0]

>>>MM= d a t a [: , 1]

>>>DD= d a t a [: , 2]

>>># D e f i n e a r r a y s h o l d i n g da ta

>>>a l l d a t a = []

>>>doy = []

>>># Loop t h r o u g h data t o c o n v e r t t o d a t e t i m e o b j e c t

>>># and doy v a l u e s

>>>f o r i in range (0 , l e n (d a t a)) :

>>> datum = d a t e t i m e . d a t e (YYYY[i] ,MM[i] ,DD[i])

>>> a l l d a t a . append (datum)

>>> doy . append (i n t (datum . s t r f t i m e (’%j ’)))

>>> p r i n t doy

[3 3 5 , 336 , 337]

Chapter 9

Plotting data in a graph

9.1 Basics of plotting graphs

The pylab module allows you to plot your data in many different ways and save the

image for later use in a report. In order to do so you first have to import the pylab

module

>>> import p y l a b

>>>

This allows you to create very nice graphics. For meteorological data, it is often

useful to plot a variable, such as wind speed, temperature or radiation against time.

In order to do so we use the plot() function in the pylab module. Let’s use the

temperature data that were introduced in Section 2.2.7 as an example for plotting.

We assigned the temperature data to a variable T , whereas the time data was given

in the third column of the array (i.e. t data[:,2]). We can plot the data by simply

defining a figure (pylab.figure(1), giving the pylab.plot() command followed by the

pylab.show() command:

>>> p y l a b . f i g u r e (1)

<m a t p l o t l i b . f i g u r e . F i g u r e i n s t a n c e a t 0 xb6d571ec>

>>> p y l a b . p l o t (t d a t a [: , 2] , T)

[<m a t p l o t l i b . l i n e s . Line2D i n s t a n c e a t 0 xb5ee42ec >]

>>> p y l a b . show ()

This will create a figure window as in Figure 9.1. If you want to issue additional

commands in Idle, close the figure window first. We can fancy things up a bit by

giving the graph a label for the x-axis:

>>> x l a b e l (’ Time ’)

<m a t p l o t l i b . t e x t . Text i n s t a n c e a t 0 xb5de64cc>

57

Figure 9.1: Plot of temperature data versus time using the plot command of the

pylab module.

Figure 9.2: Plot of temperature data versus time, now with x-axis label and title.

This will result in the graph shown in Figure 9.2. For the y-axis label we need a

superscript in the ◦C unit for temperature. For this we need to invoke LATEX style

code, where the \circ command will create the small circle and adding the ∧ will

put format it as superscript. We need to set the following first to activate LATEX text

interpretation:

>>> r c (’ t e x t ’ , u s e t e x = True)

>>>

Then we need to use the ylabel() command with LATEX text. In LATEX, a formula

starts and ends with the $ symbol. Text between the $ signs will be formatted as an

equation, which means that spaces are ignored. If you need a space you should use

the tilde (∼) symbol between two words. We often want normal text in the label,

and then use a superscript, for instance, in the unit. We can explicitly state that the

text should be in normal roman-font text font by placing it in a \rm environment,

i.e. between accolades. We also have to place an r before the label text to tell

Python that this is a raw string so it does not interpret Python escape commands,

such as \n that would make a new line, or \t that would insert a tab in Python. So

the ylabel() statement could look like this:

>>> y l a b e l (r ’ ${\rm T empera tu re ˜ [} ˆ \ c i r c {\ rm C]} $ ’ , f o n t s i z e =16)

<m a t p l o t l i b . t e x t . Text i n s t a n c e a t 0 xb4e93bec>

>>>

to get Temperature [◦C], or

>>> y l a b e l (r ’ ${\rm Wind ˜ speed ˜ [m˜ s }ˆ{−1} {\ rm]} $ ’ , f o n t s i z e =16)

<m a t p l o t l i b . t e x t . Text i n s t a n c e a t 0 xb4e93bec>

>>>

to get Wind speed [m s−1]. Note again the use of ∼ where we need spaces in

the text. In these examples we also increased the font to 16 points by the fontsize

statement in the ylabel() command, as this makes the figure better readable in your

report. The result is shown in Figure 9.3. We also need to increase the font sizes

of the x- and y-ticks, using xticks(fontsize=15) and yticks(fontsize=15) commands,

and increase the linewidth, include a legend label and specify a legend. We should

then save the figure in the image directory of our report. All commands to create

Figure 9.4 are listed below (without Python responses).

>>> f i g u r e (1)

>>> p l o t (t d a t a [: , 2] , T , l a b e l = ’ Ai r T empera tu re ’ , l i n e w i d t h = 1 . 5)

>>> x l a b e l (’ Time ’ , f o n t s i z e =16)

>>> y l a b e l (r ’ ${\rm T empera tu re ˜ [} ˆ \ c i r c {\ rm C]} $ ’ , f o n t s i z e =16)

>>> x t i c k s (f o n t s i z e =15)

>>> y t i c k s (f o n t s i z e =15)

>>> l e g e n d ()

>>> s a v e f i g (’ t e m p e r a t u r e . eps ’ , d p i =300)

Figure 9.3: Plot of temperature data versus time, now with x- and y-axis labels, the

latter with fontsize=16.

>>> show ()

Inserting the saved figure (as encapsulated postscript, eps, file) in your report re-

sults in Figure 9.5.

You can also use markers, where the ’o’ represents a closed circle, a ’+’ gives

you a plus marker, etc. By default, markers are filled but you can create open

dots and determine the fill and edge colours using the facecolors and edgecolors

options. For example we can create a scatter plot graph displaying x and y val-

ues that we obtain from the random module in scipy. The scipy.random.randn()

function gives you random samples from the standard normal distribution (a nor-

mal distribution whit average value of 0 and variance of 1). The s= option in the

pylab.scatter function represents the size of the markers.

>>> import p y l a b

>>> import s c i p y

>>> x= s c i p y . random . randn (1 0 0)

>>> y= s c i p y . random . randn (1 0 0)

>>> a= s c i p y . random . randn (1 0 0)

>>> b= s c i p y . random . randn (1 0 0)

>>> f i g u r e (1)

>>> p y l a b . s c a t t e r (x , y , s =50 , f a c e c o l o r s = ’ none ’ , e d g e c o l o r s = ’ b ’)

>>> p y l a b . s c a t t e r (a , b , s =70 , f a c e c o l o r s = ’ y ’ , e d g e c o l o r s = ’ g ’)

Figure 9.4: Plot of temperature data versus time, with x- and y-axis labels (fontsize

16), x- and y-ticks fontsize 15, a legend and a linewidth of 1.5 instead of the default

1.0.

Figure 9.5: Saved EPS figure of temperature data versus time, with x- and y-axis

labels (fontsize 16), x- and y-ticks fontsize 15, a legend and a linwidth of 1.5

instead of the default 1.0.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 9.6: Example of the use of the pylab.scatter function with open and closed

markers of different colours.

>>> p y l a b . show ()

The above commands would result in a plot similar to that shown in Figure 9.6.

9.2 More complicated graphs

It is sometimes necessary to present your data in more complicated graphs. For

instance, if you have spatially varying data (e.g. topography, groundwater head

variations, variations in NO3 concentrations) you often want to plot contours using

these data. In these cases the data consist of x and y coordinates that determine the

location, and a third variable (z) that varies spatially.

A contour plot can be made using the meshgrid() and contour() commands.

9.3 Interactive plotting of figures

Instead of the show() command that displays figures, we can also use the ion()

function for plotting figures interactively while running your Python script. The

ion() function is defined in the pylab and this module should therefore be imported

before you can include the ion() statement in your script.

9.4 Changing text fonts in a figure

We can also change the default font and other parameters in one go by issueing

the following command before we start creating the figure. We do this with the

rcParams.update() function. In the script below we define a variable newdefaults

that lists how figures are saved (.png, .eps, etc) by specifying the backend vari-

able, and the font sizes of axis labels (axes.labelsize variable, ticks (xtick.labelsize,

ytick.labelsize, text (text.fontsize and legend (legend.fontsize. We then use rc-

Params.update(newdefaults) to effectuate the update.

>>> n e w d e f a u l t s = { ’ fontname ’ : ’Roman ’ ,

’ backend ’ : ’ eps ’ ,

’ axes . l a b e l s i z e ’ : 16 ,

’ t e x t . f o n t s i z e ’ : 16 ,

’ l e g e n d . f o n t s i z e ’ : 15 ,

’ x t i c k . l a b e l s i z e ’ : 14 ,

’ y t i c k . l a b e l s i z e ’ : 14}
>>> r cP arams . u p d a t e (n e w d e f a u l t s)

9.5 Creating subplots and a second y-axis

If we want subplots in a figure, we can use the subplot() command:

>>> f i g u r e (2) # Crea te second f i g u r e

>>> s u b p l o t (2 1 1) # P l o t t e m p e r a t u r e da ta i n upper p l o t

>>> p l o t (t d a t a [: , 2] , T , l a b e l = ’ Ai r T empera tu re ’ , l i n e w i d t h = 1 . 5)

>>> y l a b e l (r ’ ${\rm T empera tu re ˜ [} ˆ \ c i r c {\ rm C]} $ ’)

>>> s u b p l o t (2 1 2) # P l o t s t a n d a r d d e v i a t i o n s i n lower p l o t

>>> p l o t (t d a t a [: , 2] , t d a t a [: , 4] , l a b e l = ’ S t . dev . T ’ , l i n e w i d t h

= 1 . 5)

>>> y l a b e l (r ’ ${\rm S t . ˜ dev . ˜ T empera tu re ˜ [} ˆ \ c i r c {\rm C]} $ ’)

>>> x l a b e l (’ Time ’)

>>> s a v e f i g (’ temp2 . eps ’ , d p i =300)

This creates Figure 9.7.

For plotting time series with a large difference between y-values, such as for

temperature (0–30 ◦C) and relative humidity (60–100%), it is often convenient

to use a second y-axis for plotting the latter. This can be done with the twinx()

command. Basically, twinx() creates a new set of axes over the existing figure.

The temperature data would then plot on the first set of axes (left y-axis), whereas

the relative humidity would be plotted on the second created set of axes (right y-

axis).

The following script code would create a single figure with the temperature

plotted on the left y-axis, and its standard deviation on the right axis as in Fig-

ure 9.8.

Crea te f i g u r e 3 , now w i t h two y−axes

f i g u r e (3)

c r e a t e l a b e l s f o r t h e x− and l e f t y−a x i s

x l a b e l (r ’ ${\ rm Time}$ ’)

y l a b e l (r ’ ${\ rm T empera tu re ˜ [} ˆ \ c i r c {\rm C]} $ ’)

P l o t T v e r s u s t ime , use red c o l o u r (r) and round marker (o)

Figure 9.7: Saved EPS figure of temperature and standard deviation data versus

time using the subplot() function.

p l o t (t ime , T , ’ ro ’ , l a b e l = ’ T empera tu re ’)

P lace a l e g e n d

l e g e n d (l o c =1)

Use t w i n x () t o c r e a t e a second s e t o f axes on t o p o f t h e f i r s t

s e t

tw inx ()

Crea te l a b e l f o r t h e r i g h t y−a x i s

y l a b e l (r ’ ${\rm S t . ˜ dev . ˜ T empera tu re ˜ [} ˆ \ c i r c {\rm C]} $ ’)

Now p l o t s t a n d a r d d e v i a t i o n o f T v e r s u s t i m e

p l o t (t ime , s tdT , l a b e l = ’ S t . dev ’)

P lace a l e g e n d f o r t h e second s e t o f axes

l e g e n d (l o c =2)

Save t h e f i g u r e as EPS f i l e

s a v e f i g (’ twoaxes . eps ’ , d p i =300)

Figure 9.8: Saved EPS figure of time series of temperature and standard deviation

of temperature using the twinx() function to create two y-axes.

Bibliography

R. Allen, L.S. Pereira, D. Raes, and M. Smith. Crop Evaporation -

Guidelines for computing crop water requirements, volume 56 of FAO

Irrigation and Drainage Paper. FAO, Rome, Italy, 1998. URL

http://www.fao.org/docrep/x0490e/x0490e00.htm.

H.A.R. de Bruin. From Penman to Makkink. In J.C. Hooghart, editor, Evaporation

and Weather, pages 5–31, The Hague, 1987. TNO Committee on Hydrological

Research. Proceedings and Information 39.

H. L. Penman. Natural evaporation from open water, bare soil and grass. Proceed-

ings of the Royal Society, 193:120–146, 1948. Series A.

H. L. Penman. Evaporation: An introductory survey. Neth. J. Agric. Sci., 4:9–29,

1956.

H. L. Penman. Vegetation and hydrology. Technical communication 53, Common-

wealth Agricultural Bureaux, Farnham Royal, Bucks, UK, 1963.

C. H. B. Priestley and R. J. Taylor. On the assessment of surface heat flux and

evaporation using large-scale parameters. Monthly Wheater Review, 100:81–92,

1972.

J.D. Valiantzas. Simplified versions for the Penman evaporation equation using

routine weather data. Journal of Hydrology, 331(3–4):690–702, 2006. doi:

10.1016/j.jhydrol.2006.06.012.

66

http://www.fao.org/docrep/x0490e/x0490e00.htm

Index

>>> Python prompt, 7, 9, 24

∼, 58

{\rm }, 58

e number, 33

pi number, 33

**, 50

** operator, 11, 50

**kwargs, 50

*args, 50

.py file extension, 24

[] list definition, 31, 51

(Pound) sign, 11

% operator, 18

LATEX coding, 58

LATEX font use, 61

LATEX use in figures, 58

import (), 14

Raw string r, 58

Anaconda Python, 7

append() function, 31, 51, 54

arange() function, 36

array data type, 31

array() function, 31

ASCII text editor, 9

ASCII text file operations, 51

axes.labelsize variable, 62

backend variable, 62

Boolean data type, 16, 29

Break statement, 32

Bugs, 27

Calculator, 15

Class data members, 44

Class methods, 44

Class type, 44

close() function, 51

cmd.exe, 7

Comma separated values (csv), 48

Command line, 7, 9

Commenting code, 10

Complex data type, 16

Conditional statement, 29

Continue statement, 32

contour() plot function, 61

converters=, loadtxt argument, 49

cos() function, 12, 33

cp calc() function, 38

createVariable() function, 52

csv file, 48

Dataset() function, 52

date, 53

Date and time formatting, 54

date2doy() function, 38

Datetime module, 13, 53

datetime.date() function, 53

datetime.now() function, 53

Daylength function, 38

Debugging, 9, 27

def statement, 39

Delta calc() function, 38

dict(), 17, 50

Dictionary data type, 16, 50

dictionary data type, 16

dtype, 51

E0() function, 39

ea calc() function, 38

edgecolors, 59

Editor, 9

elif, 43

67

else, 43

ELSE statement, 31, 32

Em() function, 39

Enthought Python, 7

Ept() function, 39

Error, 27

Error message, 27

es calc() function, 38

ET0pm() function, 39

Evaplib function library, 39

Evaplib module, 14, 38, 39, 42

Evaporation functions, 38

Executing a script, IDLE, 27

Executing script files, 27

Exponential function, 39

Extraterrestrial radiation function, 38

facecolors, 59

False, 29

figure() function, 56

File load, 27

File saving, 51

find() function, 35

float, 52

Float data type, 15

float() function, 16

Floating point decimal format, 18

Floating point exponential format, 18

fontsize, 58

FOR loop, 30

FOR statement, 30

Format of number, 18

from–import, 13

Frozenset data type, 16

Function argument list, 39, 40

Function definition, 39

Function library, 12, 33

gamma calc() function, 38

genfromtxt() function, 17, 49

GRIB file format, 52

HDF file format, 52

Help function, 10, 41

Help text, 40, 41

help() function, 33

hsplit(), 22

hstack(), 21

IDE, 9

IDLE, 9

Idle editor, 24

IDLE editor window, 24

IDLE shell window, 9, 24

IF statement, 30

If statement, 43

import, 13

Importing modules, 34

Indentation, 29

Instance, 44

int() function, 16, 54

Integer, 15

Integer data type, 15

Integrated Development Environment, 9

interactive plotting, 61

ion() function, 61

Ipython, 7

JEdit programmer’s text editor, 24

Keyword argument unpacking, 50

L calc() function, 38

Lambda function, 42

lambda function, 39

legend() function, 58

legend.fontsize variable, 62

len() function, 51

Linear reservoir function, 39

linewidth, 58

linspace() function, 36

List data type, 16, 31, 51

list data type, 31

Load a function, 34

loadtxt(), skiprows, 49

log() function, 22

Makkink evaporation, 39

Math module, 13, 22, 33, 34

Mathematical functions, 12

matplotlib, 49

Matplotlib library, 13

matplotlib.dates, 50

meshgrid() function, 61

Meteolib function library, 53

Meteolib functions, 38

Meteolib module, 14, 38, 42

Meteorological functions, 38

methods, 44

Modules, 12, 33

Multi-line comment, 11

NaN, not a number, 50

NAN—hyperpage, 48

ndarray, 51

netCDF, 52

NetCDF file format, 52

netcdf4-python module, 52

Network Common Data Form, 52

Not A Number, 48

Notepad, 9

Numerical python module, 14

numpy module, 14

Object, 43, 44

Object-oriented language, 43

open() function, 51

Operator, 11

Operator, &, 11

Operator, and, 11

Operator, binary |, 11

Operator, binary &, 11

Operator, floor, 11

Operator, modulus, 11

Operator, or, 11

Operators, bitwise, 11

Operators, comparison, 11

Operators, logical, 11

Operators, mathematical, 11

Operators, membership, 11

os.path module, 46

os.path.splitext(), 46

Output format, 18

Penman open water evaporation, 39

Penman-Monteith reference evaporation,

39

plot() function, 56

Plotting of variables, 56

pottemp() function, 38

pow() function, 33

Priestley-Taylor evaporation, 39

Program code, 10

Prompt, 9, 27

Pylab module, 13, 35, 56, 61

pylab.scatter, 59

PyNGL, 52

PyNIO module, 52

Python compiler, 27

Python script, 10, 24

Python shell window, 10

Python(x,y), 7

random module, 59

range() function, 30, 36

rcParams.update function, 61

repr(), 18

rho calc() function, 38

Run, 11

Run module, 27

Scatterplot, 59

Scientific functions, 12

Scientific Python module, 22

Scipy, 49

scipy, 14, 59

Scipy module, 13, 22

scipy module, 39

scipy.genfromtxt() function, 49

Script file, 24

Script, execution, 27

Second y-axis, 62

Set data type, 16

show() function, 56

Signed integer decimal, 18

sin() function, 12, 33

skiprows, loadtxt() argument, 49

Space in LATEX, 58

Spyder development environment, 10

sqrt() function, 12, 22

Square root function, 22

Stacking, 21

Statement, 10

str(), 18, 19

strftime() function, 54

String, 18

String data type, 16

String format conversion specifier, 18

strpdate2num() function, 49

subplot() function, 62

sun NR() function, 38

Superscript use in figures, 58

Syntax error, 27

tan() function, 33

Terminal, 7

Text console, 7

Text terminal, 7

text.fontsize variable, 62

time, 53

True, 29

Tuple data type, 16

twinx() function, 62

Type, 15

type() function, 16

Unicode data type, 16

Unpack data structures, 50

Unsigned decimal, 18

Unsigned hexadecimal, 18

Unsigned octal, 18

Using subplots, 62

Variable names, 14

Vertical stack, 22

vpd calc() function, 38

vsplit(), 22

WHILE statement, 30, 32

Wordpad, 9

writelines() function, 51

Xemacs, 9

xlabel() function, 56

xticklabelsize variable, 62

xticks() function, 58

ylabel() function, 58

ytick.labelsize variable, 62

yticks() function, 58

	Why use Python?
	Basics of Python
	Starting up Python
	Python through a text terminal
	IDLE integrated development environment
	SPYDER integrated development environment

	Working with Python
	Commenting your code
	Operators
	Using Python as a calculator
	Use of modules to load functions
	Variables and data types
	Formatting of numbers using string format conversion specifiers
	Arrays
	Combining or splitting arrays of data

	Python scripts
	What is a script?
	Example script
	Debugging
	Useful snippets of code

	Program flow control
	Boolean tests
	The IF statement
	The FOR and WHILE statements

	Functions in Python
	Basic functions
	Help() function
	Find() function
	Mod() and floor() functions
	Range functions

	Statistical functions
	Meteorological and hydrological functions
	General meteorological functions: meteolib.py
	Evaporation functions: evaplib.py

	Defining your own functions
	Defining a named function
	Lambda functions

	Object oriented programming in Python – Classes
	File and directory manipulations
	Directory manipulations
	Working with ASCII data files
	Reading data from file with loadtxt()
	Reading data from file with genfromtxt()
	Saving Python variables to file

	Working with NetCDF files

	Working with dates and times
	Plotting data in a graph
	Basics of plotting graphs
	More complicated graphs
	Interactive plotting of figures
	Changing text fonts in a figure
	Creating subplots and a second y-axis
	Index

