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Part I. Creating finite difference
models in Python






Introduction

Nowadays, a wide selection of very powerful groundwater flow modeleisable.
For almost every problem there is a code that suits your needs. But sosdtime
code at hand is not just what you want. It may be that it doesn’t hansibeaific
boundary condition or you want the output to be in a slightly different farima
make the post-processing easier. Wouldn't it be convenient then if see the
skills to modify the original code a bit, or even to create your own model?

Moreover, if you have made (simple) models yourself, you also betterunde
stand how existing codes work. This may be helpful in a situation where thelmod
crashes or behaves unexpectedly in a different way.

Fewer and fewer hydrologists possess the skills to modify or write computer
codes. So, learning to write your own models will give you an advantagerder
to do so, you also need to learn a programming language. A programming lan-
guage is a set of functions and statements that allow you to pass commands on to
the computer. There are dozens of different programming languagiéstdge. Ex-
amples include Visual Basic, Pascal, C, FORTRAN, Python and many, marmy mo
In this course we will use Python. Python is a so-called command-line interpre
you type in the commands that are subsequently executed. These commands ¢
be combined into a program which we call a script. The advantage of ugthgrP
is that lots of the things you would normally have to worry about as a program-
mer have already been done for you. For example, creating plots ang cha
extremely easy because the statements to send graphics to the scredrelaaye a
been programmed. You can simply use the commands included in Python and its
libraries like matplotlib instead of figuring out all this complicated stuff yourself.

Another advantage of Python is that it is becoming widely used in variots par
of the scientific community. Popular geographic information systems like ArcGIS
and GRASS also have Python functionality. In the groundwater industid;- M
LAB, another interpreted programming language, is still the standard, ghhou
that also slowly starts to change. The reason that we do not use MATLAsIn
course is that (i) Python is just as good and sometimes even better than MBATLA
and (ii) Python is open-source software. The latter means that there #oems-
ing issues and that you can install and work with Python on any computer, fo
example at your home or on a laptop during your fieldwork.

So, in short, being able to write your own modeling code helps you to better
understand what you are doing if you are using an existing model. Alsgs g
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Chapter 0

you the ability to modify and improve models or create custom-made models. In
the learning process, you will become familiar with the basics of programming
languages, which you can apply to other areas outside groundwatentideding.

It is assumed that you are familiar with the basics of Python. If not, or if you
want to refresh your memory, then first familiarize yourself by going tghothe
Python tutorial, which is available from your instructor.



Chapter 1

Calculating heads

1.1 Solution methods

During the lectures we have looked at the solution of unknown heads iatéhier
nodes of a grid for which the heads at the boundary nodes are kridinioh{et
boundary condition). We have seen that by ‘moving’ the so-called faeep-
erator through the grid, the head at each node could be calculated astiariu

of the heads in the neighboring nodes. Calculating the heads once, droweg

not enough to obtain the final solution. Instead, we started with an initialsgues
and then repeated the calculations until the heads no longer changeaaighjfi
(iteration).

1.1.1 Gauss-Seidel iteration using a spreadsheet

Such calculations are easily done by computers. Before creating aaprdgr
Python, let’s look at how we can use a spreadsheet to do these calcaileBiap-
pose we have a grid as in figurell.1 with the heads given for each cekondtiel
boundary.

4 5 6 7
4 7
4 7
* * * 4
4 |5 |6 |7

Figure 1.1: Simple mesh with heads fixed on the boundaries.

We can easily imagine the cells of a spreadsheet to coincide with the nodes of
the model mesh. To do the calculations, proceed as follows:

e Open your spreadsheet program.
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¢ Type in the fixed head values at the cells representing the model boundary

e Type a formula in the upper left interior cells that calculates the average of
the heads in the 4 neighboring cells (see figuré 1.2).

e Copy this formula to the remaining interior cells.
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Figure 1.2: Entering the formula for Gauss-Seidel iteration in Excel.

It is that easy! The only thing is that, depending on the spreadsheetsgu u
you may need to iterate manually. In Microsoft Excel, this is done automatically if
you select Tools— Options and then on the Calculations tab enable the Iteration
option.

1.1.2 Gauss-Seidel iteration using Python

The advantage of using a spreadsheet is that it is easier to envisage deé mo
structure because, like a finite-difference model, a spreadshedstsarfcells. In

the remainder of the exercises, however, we will use Python becaiitsenafich
greater flexibility. As an example, take a look at the following Python-scripighw
does exactly the same as what we did before in our spreadsheet.

from nunpy inport array

h = array([[4., 5.,
[4., 0.,
[4., O
[4., 5

o002
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dummy = h. shape
nrow = dunmy| O]
ncol = dumyl[ 1]

print 'Head matrix is a ', nrow, ' by ', ncol, ' natrix.
ni =1

conv_crit = le-3

converged = Fal se

whi l e (not converged):
max_err =0
for r in range(1, nrow - 1)
for ¢ in range(l, ncol - 1):
h_old = h[r, c]
h{r, ¢] = (h[r - 1, ¢] + h[r + 1, ¢] + h[r, ¢ - 1] + h[r, ¢ + 1]) [/ 4.
diff = h[r, c] - h_old
if (diff > max_err)
max_err = diff

if (max_err < conv_crit)
converged = True

ni =ni +1
print 'Nunber of iterations ="', ni - 1
print h

At first sight, this may look incomprehensibly complicated. Itis certainly more
complicated than entering the formulas in a spreadsheet. But if you getoses
gramming it will become much easier to ‘read’ such scripts. Note how indentation
is used to structure the script. In fact, you have to indent in Python, oigeitv
will complain! Try if you can understand what is going on here and thewans
the following questions:

e What is the purpose of the variable converged?

e What values does the shape variable return? Can you think of a reagon w
it is better to use ‘shape’ to define the number of rows and columns rather
than just assigning fixed values to these variables yourself?

o What is the name of the variable that is used to store the number of iterations?

e How does the program know that it only needs to calculate the interior
nodes?

Exercise: The script is available on Blackboard. Download it to a local disk
and open it in Python (simply by clicking File- Open and selecting it). The script
is opened in the script editor and can be run by pressing F5. Investigadédicts
of the convergence criterion and initial head guess on the number of itsaSet
the convergence criterion to different values and note the number didtesaDo
the same for the initial heads of the interior nodes.
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1.1.3 Successive over relaxation

A way to speed up the convergence is to use Gauss-Seidel iteration in eimiin
with successive over relaxation (SOR). In this method, the differenwecka the
calculated value at the new iteration interval and that of the previous itefiation
tervalc = hZ;“ — R is multiplied by a relaxation factap. The new value of
h"*! becomes:

W = B 4 we (1.1)

This equation can be written as:

m—+1 Jrherl +hm m

h?:jﬂ — (1 _ w)h% +w 1—1,j m—14 41,577,541 (1.2)

Exercise: Open the example script of Gauss-Seidel iteration and modify it in
such a way that it can incorporate SOR. What extra variable(s) aced@eNote
that maxerr can become negative with SOR and that you need to take care that you
compare the absolute value of maw to the convergence criterion. Use a value of
w=1.1.

The number of iterations is now ....... Increase the valug ahd run the
script again. Note that when > 1.25 the number of iterations increases compared
to the script without SOR! This is because for high values tfe calculated heads
during the first iterations overshoot the final ‘true’ values and it takesestime to
converge back towards these values.

1.1.4 Direct solution

The previous exercise shows that the heads at the interior nodesdily oalcu-
lated using Gauss-Seidel iteration, either with or without SOR. Iterativéicody
however, are not the most efficient way to solve the system of finite eiftar
equations. Direct solution methods are an alternative, more efficient mchgre
easily applied in Python. Remember that a system of linear equations (stieh as
finite-difference expressions for this problem) can be written in matrix form:

[Alh = f (1.3)

where|A] is a coefficient matrixh a column vector of unknown heads afich
column vector containing all known valugsfollows from:

—

h=[A""f (1.4)

where[A]~! is the so-called inverse ¢fi].

For the problem presented above, write down a finite-difference ssiprefor
each unknown head at the interior nodes. The result is a system of 4 digea-
tions with 4 unknowns. Transfer all known values (the heads at thedaoi@s)
to the right-hand side and express the system of equations in matrix formeat. Th
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use Numpy's linear algebra package to soIvd%Qsee page 19 — 20 of the Python
tutorial on how to do this). Did you get the same result as before?

Although direct solution methods are more efficient than iterative methods
they require large amounts of computer memory for real-world numerical mod-
els. Therefore, most codes use solution schemes that combine the iesh of
worlds of iterative and direct solution techniques.

1.2 Regional flow example

The previous example was very basic and not of much use in real-worlélmod
ing. In the next example, we will use our numerical model to analyze flotesys
in a topographically-driven groundwater system. In the course ‘Ghoater hy-
draulics’ you derived an analytical solution for this problem and did a micale
calculation with FlexPDE. We will now modify our script so we are able to solve
the problem ourselves. We will combine the model with the powerful graphica
capabilities of Python’s Matplotlib package to visualize the output. In thatway,
have already created a tool that starts to look like the industry-standarelingpd
packages!

Take the script for Gauss-Seidel iteration with SOR as your starting poist. F
save the script under a different name. Set the value of omega=d .8 and set
the convergence criterion tio- 10~°. As a first step, we will increase the number
of rows and columns of the model from 4 by 4 to 26 by 26. An easy way to so
is to use the function zeros() to create the matrix h. In that way, all the starting
heads will be set to 0 automatically. Look up how the function works andtinser
the appropriate statement in the script. Note that you have to import the function
zer os() from numpy, just like the functiosi n() andpi (see below).

We use the same configuration as for the exercise in ‘Groundwaterhipdia
so our model will measure 500 by 500 m. What will be the width of the grid cells
(note: we have a mesh-centered grid!). Declare a variable called dgedrith
value to the appropriate grid cell width. We will use square cells, so there is n
need to define the height of the cells explicitly.

The heads at the top of the model can be defined by superposition of 2 sine
functions with different wavelengths. This is expressed in the formula:

h = Aj % sin(ky x x) + Ag * sin(ka * x) (1.5)

whereA; and A, are the amplitudes of the respective wavess 2 « mn/L, n is
the wave number and is the width of the model. Modify the script to include the
parameterd,, Ay, As, n1, no, k1 andks. Set the values ofl; = A, = 5.0 m and
ny = 1 andng = 2.

Equation 1.5 contains the variahle so we need to know for each column
in the grid. Try to find the right statements to accomplish this and then implement
equatior 1B in the script. Once you have done this, you're almost reathrtthe
calculations. As a final step, include this statement at the beginning of ipé& scr
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from nunpy inport =

Include the following statements at the end of the script to produce graphica
output:

cl ose()
f = figure()
[X, Z] = neshgrid(linspace(0, L, ncol), linspace(0, -L, nrow))

contourf (X, Z, h)
col orbar ()

[dhz, dhx] = gradient(h)
qui ver (X, Z, -dhx, dhz, color = "'w)

Look up what these functions do. Can you understand what they mego@ |
do you're now ready to start calculating your first real-world, self-engabundwa-
ter flow model!

1.2.1 No-flow boundaries

Note that we didn’t worry about the no-flow boundary at the bottom oftloeel
in the previous exercise. How can you see from the contour lines of thalc
heads that the bottom boundary is not a no-flow model? In the next exaveis
will implement the no-flow boundary. We only need to make a few adjustments.
Remember from the lectures that a way to incorporate no-flow boundaries is
to add imaginary nodes outside the model domain. The type of grid determines
how the no-flow boundary is implemented. For a mesh-centered grid, tegra
across the boundary becomes zero (the condition for no-floi),if; = h; ;—1,
whereh; ;1 the head at the the imaginary node outside the model domain and
hi j—1 is the head at first node inside the model boundary.
We will expand our matrix at the bottom with one additional row, representing
the imaginary nodes. To do so, change the declaration of matrix h. Then imqleme
the no-flow boundary by adding the following line:

h[-1, :] = h[-3, :]

Specifying- 1 at the row index is short in Python for the last rovd indicates
the third-last row. The colon at the column index means ‘all columns’. So this
statement assigns the heads of the third-last row to the heads of the |aftrrallv
columns. Where would you insert this line into our script? If you add it yotips
is almost ready to handle the no-flow boundary. Before you start thelattm
though, you need to make some minor changes to the statements that produce the
graphics. These prevent the imaginary cells from being displayed. dinect
syntax is:
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cl ose()

f = figure()

[X, Z] = neshgrid(linspace(0, L, ncol), linspace(0O, -L, nrow - 1))
contourf(X, Z, h[:-1, :])

col orbar ()

[dhz, dhx] = gradient(h[:-1, :])
qui ver (X, Z, -dhx, dhz, color ="'w)

Only 3 lines are different. Study the differences and make sure you iy
they mean. Then start the calculations and pay particular attention to the head
contours near the bottom boundary. What has changed?

11
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Calculating flows

2.1 Water budgets

In the previous examples the convergence criterion controls the agooirdlce
solution. As a second check on the accuracy, a water balance cahuje $ee-
member from the lectures that for a 2D model with square grid cells:

A
Q= —/{:A—ZAm = —kAh 2.1)

Assume that the hydraulic conductivity)(is 10 m/d. Extend the script of the
regional flow example to calculate the water balance of the whole model domain.
Calculate inflow and outflow of each model boundary except for the bditamd-

ary. Make sure to adopt a sign-convention for inflow (+) and outflowHHl in the

table below.

Table 2.1: Water budget for regional flow example

flow component magnitude

Qieft
dright
Qtop
Qbottom

Qtotal

Compare the net inflow (inflow - outflow) to the magnitude of the inflow/outflow.
Is the error in the water balance acceptable?

Note that thenet flow over the top model boundary is basically zero but that
the inflow and outflow components themselves over this boundary are nat Wh
are the magnitudes of the inflow and outflow over the top boundary?

13
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2.2 Abstraction well

In this exercise we calculate the drawdown due to a well that fully penetaates
confined aquifer. Flow is horizontal and the aquifer is isotropic. Undesdtton-
ditions and whem\z = Ay, the formula for Gauss-Seidel iteration takes the fol-
lowing form (check your lecture notes):

hi—1j 4+ hij—1+ hig1; + hijy1 + szR/T
4

whereT is the transmissivity (fiday) andR is the volume of recharge/discharge
per unit time per unit surface area. R and Q are related by (for squidreadis, so
Ax = Ay):

—Q

v

Transmissivity i’ = 300 m?/day. The well is located at = 0, y = 0 and has

a discharge of) = 2000 m?/day. The value of? is for the infinitesimal volume
around the well (figure211). Outside this volurie= 0.

hij = 2.2)

(2.3)

« Imaginary node

® Fixed head node

rrrrrr Radius of influence

S|

Figure 2.1: Finite difference grid for abstraction well exercise. Modifredn
Wang and Anderson_(1982).

Because the equipotential lines will be cylindrical around the well, the pmoble
is symmetric and we only need to consider one quarter of the problem domain.
Let's model the lower-right quardrant so the left and upper boundegythe no-
flow boundaries (figure_2.1). The analytical solution for this problemvsmby
the Thiem equation:
Q r

h=nh — 1
0+27TT nrmm

wherehg is the head before pumping amg,.. is the radius of influence of the
pumping well. Assume for this exercise that,, = 2000 m. Note that al-
though time is not in this formula, this is actually not a steady-state problem: The

(2.4)
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Thiem equation calculates the heads for a givgh.. Check your lecture notes of
‘Groundwater hydraulics’ to see howy,,. varies with time.

As before, take the script for Gauss-Seidel iteration with SOR as yatingta
point. Set the value of omega to = 1.8 and set the convergence criterion to
1-1073. Use a (mesh-centered) grid of 12 rows by 12 columns (of which the
first row and column are imaginary nodes!). Use = Ay = 200 m. Make the
following modifications to the script (not all of them are straightforwardasiofor
help if you don’t succeed yourself):

e Calculate the distance of each node to the well and find the nodes whose
distance most closely match the radius of influengg,{ = 2000 m). Set
the heads of these nodes and of those outside the radius tt) m. Set the
starting heads of all remaining nodesite= 5 m.

¢ Include lines to make the left and upper boundaries no-flow boundaries.

¢ Modify the statements that perform the Gauss-Seidel iteration in such a way
that they can take into account the abstraction well (equatidn 2.2).

e Make sure that the heads are only calculated for the nodes that aoé et
area of influence of the well. In other words, don't calculate the he&ttheo
nodes that you have setko= 10 m. You will have to think of a smart trick
to accomplish this.

¢ Include the options for graphical output at the end.

e Finally, add a program line to calculate the analytical solution with the Thiem
eguation so you can compare it to the numerical result.

You will find that the analytical and numerical results agree very well. You
could include a water balance calculation but that involves quite a bit of adminis
tration since the inflow here is not simply through the right and bottom griddboun
aries but across the circumference formed by the sides of the cells éhataak
the radius of influence.

15
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Transient simulations

3.1 Abstraction well (transient)

The previous exercises all assumed steady-state conditions. In thessexére
well-drawdown problem will be expanded to a transient simulation. As befor
only the lower-left quadrant, measuring 2000 by 2000 m, is considertaublauall
the boundaries are no-flow boundaries and the cell si2eris= Ay = 100 m.

The numerical results will be compared to the analytical solution by Theis that
calculates the drawdown at a radiu} from the well:

_ @
ho —h = 47TTW(u) (3.1)
where
o'} efw
W(u) = —dp (3.2)
u 1/}
and 2
T

W (u) is called the well functions and is usually tabulated in textbooks. It is also
implemented in Python so there is no need to look it up: you simply calculate
it with Python! The input file for this exercise has been prepared for (jtois
available via Blackboard). Study it and answer the following questions:

1. What is the function of the parameters alpha arsieps?
2. What is the size of the time steps?

3. See if you can find the lines that calculate the analytical solution. What is
the Python equivalent of the well functio# (u)?

4. At what distance are the analytical solution and the numerical solution com-
pared?

17
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After you have studied the script, run it and observe the graph thatdsipeal.
It compares the fit between the analytical and numerical results.

1. Atwhat time do they start to deviate and why is this?
2. What causes the smaller deviations before this time?

3. Modify the script to have it perform fully-implicit calculations. What is the
effect on the number of iterations?

4. Then change to a fully-explicit formulation. What happens? To piahes)
only one line of the code needs to be changed. Which one? And how would
you change it? Make the change and discuss the implications.

To finish, uncomment the lines that produce the 3D graph of the headgdurin
the calculations. A ‘movie’ will be displayed on the screen that shows thegeha
in heads over time.

In a relatively short time you have mastered Python, learned to program yo
own modelling codes and became a movie producer. Not bad, don’t ydthin
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Well field in a river valley

This exercise is a modified version of tuturial 3 from Chleng (2005).riteseto (1)
become familiar with the input file structure of MODFLOW, (2) compare 3D and
quasi-3D vertical discretization methods, (3) illustrate the use of the MOD¥FLO
Well and River packages and (4) practice the interpretation of the watende.
The files that are needed for this exercise are available on Blackboard.

Problem description

A river flows through a valley, which is bounded to the north and south by im-
permeable granite intrusions (figlirel4.1). The hydraulic heads in the altbg
upstream and downstream model boundaries are known. The rives foart of a
phreatic aquifer, which overlies a confined aquifer of a variable thieknA silty
layer with a thickness of 0.5m separates the two aquifers. A well field domgs
3 pumping wells is to be installed, which will be abstracting groundwater at-a pro
posed rate of) = 500 m3/day from the confined aquifer. The question is how that
well field will affect the discharge of the river, which provides water aluable
ecosystem downstream.

The relevant hydraulic parameters of the aquifer system are listed ir_tdble 4

Model setup

Several files are available on Blackboard with information on the geomatirthen
heads of the aquifer system. Start by downloading these files and putrthyemr
working directory.

We will initially simulate the system with a quasi-3D model (steady-state).
That means that the silt layer is not explicitly included in the model. Instead, we
enter an appropriate value of the vertical leakance. Hence, the headsitt thyer
is not calculated but the exchange of water between the upper and threalpuier
through the silt layer is. To set up the model, proceed as follows:
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Figure 4.1: Configuration of the model

Create a new model in PMWIN and lay out the grid. Use 2 model layers
(each representing a single aquifer), 20 rows and 27 columns. Yoiincan
the model extent from figuie 4.1.

Load the basemap for this exercise by going to OptienMap in the grid
editor. Right click on the DXF File field and open the file basemap.dxf
(which you just copied from Blackboard). Make sure you check theibo
front of the filename.

The map will be loaded but it is shifted relative to the grid. You can move
the grid by selecting Options> Environment and entering Xo = 200 and Yo
= 6000 in the Coordinate System tab.

You can already refine the grid at the location of the well field. To do so,
leave the Grid Editor and enter it again. Then halve the widths of the columns
8 through 14 and rows 7 through 12 by repeatedly right-clicking eacteaf th
and specifying the appropriate refinement factor (= 2). Your grid wilkloo
like the one in figuré 4]2.

Set the appropriate layer properties (confined or unconfined) tier—
Layer property. Select ‘User defined’ for the Transmissivity andkbaeae.

Set the boundary conditions. The granite hills will be represented byweacti
grid cells. Use the Polygon feature of the PMWIN editor to accurately delin-
eate the hills. You can copy the inactive cells to the second model layer by
activating the ‘Layer copy’ button on the toolbar. The boundary condtition
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Table 4.1: Aquifer system parameters for river valley exercise

Parameter magnitude units

Aquifer 1 (phreatic)
Horizontal hydraulic conductivityk(,) 5 m/day
Vertical hydraulic conductivityX,) 0.5 m/day
Porosity @) 0.2

Silt layer (confining unit)

Horizontal hydraulic conductivityk(,) 0.5 m/day
Vertical hydraulic conductivityX,) 0.05 m/day
Porosity () 0.25

Aquifer 2 (confined)
Horizontal hydraulic conductivityk(,) 2 m/day
Vertical hydraulic conductivityk,) 1 m/day
Porosity () 0.25

River
Stage (upstream/downstream) 19.4/17 m
Bottom elevation (upstream/downstream) 17.4/15 m
100 m

River bed hydr. conductivity 2 m/day
River bed thickness 1 m

at the upstream and downstream valley boundaries will be fixed heblds. T
values of the fixed heads (which you need to enter later under-Giliitial
and prescribed heads) are in the file fixezhds.dat.

Specify the layer top elevations by going to Grid Top of Layers and load-

ing the files topl.dat and top3.dat. Specify the layer bottom elevations by
going to Grid— Bottom of layers. Daiot accept the option for determining
the bottom elevations from the top elevations of the underlying layers. Set
the bottom elevation of layer 1 to the elevation of the top of the silt layer,
which is stored in the file top2.dat. Set the bottom of layer 2 to a constant
value of 0 m.

Select Parameters Time and set the time units to days and specify that this
will be a steady-state simulation.

Specify the transmissivity, vertical leakance, horizontal hydraulic gotin

ity and effective porosity. You can calculate these number with the data from
table[4.1 and the thicknesses of the layers (look these up in the model). Take
care of the following:

1. Note that the thickness of the confined aquifer is not constant. There-
fore, the transmissivity of this layer varies. You can calculate it au-
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tomatically by using a trick. First, set the hydraulic conductivity to 2
m/day in each cell (use the Reset matrix function). Then load the file
top3.dat which contains the aquifer top elevation. Since the bottom el-
evation is 0 everywhere, the numbers in this file equal the thickness of
the aquifer. Before pressing the Ok button to load the file, select the
option multiply. The numbers currently in the grid will be multiplied
with the numbers in the file.

2. The vertical leakance is only defined for the first model layer. It ts no
defined for the bottom model layer (you can check this in the MOD-
FLOW input file later). It is dependent on the thicknesses of all 3 hy-
drostratigraphic units. It is a bit harder to calculate than the transmis-
sivity so the file has been prepared for you. It is called vcontl.dat.
Check if you understand how these values have been calculated. Do
this by calculating the value for a particular cell by hand.

e Add the river. MODFLOW requires that the river data (i.e. stage, bottom
elevation, and riverbed conductance) are specified for each drithaethe
river intersects. Go to Models» MODFLOW — Flow packages— River.
Use the Polyline input method to accurately trace the river. Vertices are
added by left-clicking; defining the polyline is cancelled by right-cliking. To
complete the polyline, left-click the last vertex you specified again. Then
right-click the leftmost (upstream) vertex and enter the data for this river
node (the values are in tallle ¥.1). Do the same for the rightmost (down-
stream) vertex. You do not need to enter the values for the other vertices:
PMWIN interpolates between the two outer vertices, which makes life a bit
easier.

After entering all the data make sure that you did not forget anythingckche
ing the input is an important step in groundwater modelling, especially if you are
running models that take a couple of hours to finish. Then run MODFLOW.

Graphical user interfaces like PMWIN are great in that they tremenddasly
cilitate data entry. The drawback is that a lot of the ‘action’ takes place dehin
scenes and remains hidden from the user. For example, PMWIN genaliatee
input files that MODFLOW needs. Usually, there is no need to edit theséfifgsl
yourself but as an academic you are naturally curious of how they looked¥er,
sometimes a graphical user interface does not support all the optiom®déand
you may need to modify the input files directly. Therefore, before prdicge go
to your working directory that contains all the files of this model. Look up the file
that has the extension ‘.nam’. It contains a list of the filenames that arebysed
MODFLOW. Look up these files and try to find out what their purpose isvaimak
data they contain.

Then plot the hydraulic head distribution using Toel®2D Visualization. Also
check the water balance. You can use either the water budget option\o1 IR ler
open the file ‘output.dat’ in a text editor. How much water enters the model domain
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Figure 4.2: Model grid

through the upstream valley boundary? And how much water leaves thtbag
downstream boundary? The river is both a source and a sink of waber &quifer.

But on the whole, is this a losing or a gaining river? Note that the water balanc
error is basically zero. Write down the numbers as we will compare them to the
model with groundwater abstraction later.

Then run the model again but with the 3 wells in place in the confined aquifer.
Each withdraws water at a rate of 506/dmy from layer 3, which is entered under
Models— MODFLOW — Flow packages— Well.

Again, observe the head distribution. This time, also use PMPATH to draw flow
lines. Then check the water budget again. What percentage of the pumaped
derives from groundwater and how much is infiltrated river water? By fmuch
has the river discharge decreased at the downstream model bpwodgrared to
the natural situation?

Then change the model from a quasi-3D to a full 3D model. The easiest way
to do this is to:

e go to Grid— Mesh size and subdivide the second model layer into 2 layers.
Do this by pressing PgDn to go to the second model layer. Then you can
right-click on any cell and type 2 in the Layer refinement field.

e set the appropriate layer properties under GridLayer property. Select
‘Calculated’ for the Transmissivity and Leakance. This means that thewalu
of these parameters will be calculated by MODFLOW using the hydraulic
conductivities and layer top and bottom elevations.
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e set the boundary conditions. The values for the two aquifers remain the
same as before. The inactive cells of the second model layer (the sil} layer
are the same as for the aquifers, but the boundaries on the upstream and
downstream valley boundaries are no-flow boundaries (we assunfiotinat
is purely vertical in the silt layer so there is no flow over the boundary).

e set the layer top and bottom elevations using the values from the files you
used earlier.

e set the horizontal and vertical hydraulic conductivity and effectiveogity
to the values from table 4.1.

If you run the model you will get basically the same results as with the quasi-
3D model. Check this by comparing the head distribution and the water balance.

As a final exercise, do a sensitivity analysis for the hydraulic condtictf
the river bed. As you can imagine, this parameter is extremely difficult totdfyan
and it will also probably be quite variable along the streambed. We haveaused
value of 1 m/day but why could they not range between 0.5 to 2 m/day? Re-run
the model using these extremes and investigate the effect on the hydraadic he
distribution and the water budget. Don't let these result make you lose faith in
models but consider them a lesson in critical thinking.
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Chapter 5

Well in a semi-confined aquifer

This exercise serves to illustrate the basic capabilities of MicroFEM. A well ab
stracts groundwater at a constant rate of 5¢hwur from a confined aquifer. Un-
der natural conditions uniform flow occurs in a WSW direction, parallel¢éddihg
sides of a rectangular model. We will model the head distribution in the aquifier a
calculate a water balance.

1. Create a network using the FemGrid generator: Choose Filé&ew grid
and in the window that appears select ‘Create new grid’ and pressmke |
subsequent window, enter a descriptive model name. This is requife be
you can continue. By pressing OK you enter the grid editor.

In the upper righthand corner you see 3 tabsheets in which you enter the
required information to create the grid. You will have 5 fixed nodes: four

at the corners of the grid and 1 for the well. Only 3 fixed nodes are Hefau
however. To change this, type 5 in the edit field and click the button ‘Change
number to’. Now there will be 5 rows for which you can enter the x- and
y-coordinates. The coordinates are (1000, 0), (13000, 3002)0(, 7000)

and (0, 4000) for the model boundary corner nodes and (4500) 300the

well. Define the segments and regions as explained during the lecture. Set
the distance between nodes to 400 m on the model edges and to 250 m in the
model interior.

Then press the button ‘Fixed nodes’ in the toolbar at the bottom of your
screen. The fixed nodes are created and displayed on your sciéen.
caption of the button has changed to ‘Nodes on segments’. Press it again
and observe what happens. Press it again and again and each timauneake s
you understand what is going on. Your network will have 866 nodesréig
E.3). Then you can either save the network (recommended) or choose the
number of aquifers (which is 1) and start entering the hydraulic paraseter

2. Find the dimensions of the rectangular model domain, i.e. the exact model
width and length. Do this by placing the cursor in one of the 4 corner nodes
and assigning the variabteo all nodes for a parameter (e.g. h0) in the input
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Figure 5.1: Rectangular model area with short east- and western anddahgrn
and southern boundaries.
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mode. Look up the meaning of this parameter in the help file! What are the
model dimensions?

3. We start with a confined aquifer so the vertical resistance of the firdemo
layer should be set to 0 (which is interpreted as infinite by MicroFEM). The
transmissivity isI’ = kD = 800 m?/day. These parameters are entered in
the input mode.

4. Groundwater flow is in a WSW direction parallel to the long sides of the
model. The head at the eastern boundary is 20 m and the hydraulic dradien
is 0.001. Assign head values to all model nodes by marking the east model
boundary in the walking mode and using a formula that calculates the head as
a function of the head on the eastern boundary, the gradient and thblgar
d (which represents the distance to the nearest marked node).

5. Make a contour map in the drawing mode to check that the heads were en-
tered correctly. Double-check by going to the western boundary: taé he
should be 7.631 m here.

6. Go to the fixed node that contains the well (coordinates 4500, 30Gie N
that it has the label 'fixed node 5°‘ so it is easily found by using the ‘Jump to
node’ function in the walking mode. Press F12 or the ‘Jump to node’ button,
select ‘Next label’ and choose ‘fixed node 5’ from the pull-down list.kigla
sure that you ended up in the right node (check the coordinates asswvell a
the label in the lower-right corner of the screen) and then assign the well
discharge to this node in the input mode. Well discharge has a positive value
in MicroFEM, contrary to MODFLOW! Also change the name (= the value
of the parameter labell) of this node from ‘fixed node 5’ to ‘Well'.
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7. Run the model by going to Calculate ‘Go calculate’. Why is there no
convergence?

8. Restore the natural hydraulic head situation by repeatind_step 4. ®en fi
the heads on the eastern and western model boundaries. Mark theomodes
these boundaries and make sure that the head of the first aquifer iedelec
in the parameter list. Then use the ‘Toggle heads for marked nodes’ fanctio
to fix the heads: The word ‘fixed’ will appear in the parameter list for the
marked nodes.

9. Run the model again by going to Calculate‘Go calculate’. This time, a
solution is found. Why?

10. Draw the hydraulic head contours in the drawing mode. You can gvarla
set of flow vectors to visualize the flow. Explore the options of the drawing
mode by clicking around a bit.

11. Go to the node that contains the well to draw the flowlines to delineate the
capture zone of the well. Specify a number of 12 flowlines, a timestep of
100 years, layer thickness of 40 m and a porosity of 30 %. What is the width
of the capture zone? Why are the isochrons curved?

12. Set up a water balance for the entire model. You can find the wateicbalan
options in the walking mode. What is the inflow through the eastern model
boundary? And what is the outflow over the western boundary?

13. We will now change the model from a confined aquifer with a well to a
semi-confined aquifer without a well. Moreover, we set the transmissivity
downstream of the well to 300 3fday. Thegroundwater table (h0) is set
to the originalhydraulic heads under natural conditions. Make sure to make
the following changes:

e Assign a hydraulic resistance (= parameter c1) of 2500 days to the
confining unit.

¢ Set the groundwater table by marking the eastern boundary and enter-
ing the formula (as in stdg 4 but now for h0 instead of h1): 20-0.001*d.

e Change the transmissivity downstream of the well from 860diay to
300 nt/day. Do this by marking the appropriate nodes and assigning
the value of 300 fday to the marked nodes only in the input mode.

e Remove the well from the model (i.e. set the discharge to 0).

14. Calculate the heads. Also make a contour plot of h1-h0 through thesiogo
steps:

e Go to Project— Project Manager to add an extra variable for each node
that can be used to hold intermediate results. A window will appear
with a list of all MicroFEM files for this model.
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Click the button with the bright-green + sign, select Xtra worksheet,
check ‘New’ in the ‘Create data from’ field (otherwise you will be
asked for a file to read the data from) and click OK. You can choose to
have as many registers (= new input fields) as you like, but 1 will be
enough for our purposes.

Note that the project manager is also the place to add special types of
boundaries. Close the project manager and note that an new tab has
been created that is called Xtra. It contains an edit field for a variable
x1. This variable can contain any value we assign to it without affecting
the calculations. Since we are interested in the head difference across
the semi-confining unit we assign the result of the formula ‘h1-h0’ to
all nodes.

The positive values of the head difference indicate that there is upwam s
age in the whole model domain. Check the water balance. How much is the
upward seepage through the semi-confining unit?

15. Then activate the well again. Calculate the model and check the wter ba
ance. Indicate the zones of upward seepage and infiltration by dravang th
difference between h0 and hl. Calculate the volumetric rate of upwape see
agefinfiltration (in n/day) for each node (in the Xtra worksheet). Check

your

calculation by comparing it to the water balance.

16. What proportion of the well discharge infiltrates through the semi-uioigfi
unit and what proportion derives from regional groundwater flow?
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Infiltration canal

This problem serves to demonstrate the supremacy of finite element models over
finite difference models when it comes to grid design. A shallow infiltrationlcana
loses water to two fully penetrating drains. The drains are 120 m apart, \attrw
levels at 40 and 35 m (left and right side, respectively) above an intqperbase.

The water level of the 5 m deep and 25 m wide infiltration canal is 55 m (see
figure[6.1). The aquifer is homogeneous and isotropic, with hydrauliduiivity

k = 25 m/day.

We will simulate this problem as a profile model. A hollow groundwater table
will develop between the infiltration canal and the drains. The grid must be de-
formed in order to represent the saturated part of the model domain. Rememb
that at the groundwater table the pressure of the water P, — Putn = 0 SO
that the hydraulic heatd = z + % = z, wherez is the so-called elevation head. In
other words, the elevation of a water table node above a referencéitetret case
the impermeable base) needs to be equal to the calculated head. The nussh nee
to be adjusted after each calculation so that the top model boundary ceimditie
the groundwater table.

1. In order to save you some time, the configuration of the network haslglrea
been prepared and can be found on Blackboard. The fixed nodes, tr
gles and quadrangles that make up the mesh are stored in the file ‘profile
model.fen’. Open this file in MicroFEM by going to Files New Grid and
pressing OK. A file selector window appears. Open the fen file and check
how the FemMesh network has been defined.

2. Create the network and go to MicroFEM. Select 1 as the number of layers
A profile model is implemented in MicroFEM by assigning an infinite re-
sistance to the upper confining unit (i.e., c1 = 0) and entering the hydraulic
conductivity (k-value) instead of the transmissivity.

3. Then set up the model: assign fixed heads to the nodes that repiresent
canal and the drains and set the appropriate values for hl. Enterrie tra
missivity (= hydraulic conductivty). As a preparation for subsequéeps
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Figure 6.1: Configuration of the flow problem of the infiltration canal

give the nodes that sit between the canal and the drains the label ‘water ta
ble’.

4. You are now ready to calculate the model for the first time. New heads will
be calculated, which provide a first estimate of the shape of the grourrdwate
table. We can use these to relocate the nodes at the top of the model domain.
Take the following steps and follow these carefully (otherwise MicroFEM
could crash):

e Go to Export— Special ASCI!I files and select CSV-file. For each node
all the model parameters, together with the x- and y-coordinates, will
be exported.

e The trick is now to change the y-coordinates of the ‘water table’ nodes
and set these equal to the head we just calculated (parameter hl). You
could in theory do this in Excel but it's a pain. Python is much bet-
ter suited for this purpose. Remember also that this is only a small
file but the output from a real-world model may not even fit in Excels
datasheet. A file called 'reackv file.py’ is available on Blackboard.
Download it to the same directory where you saved the csv file. The
comments in the file explain in detail what it does. Inspect the file and
make sure that you understand what is going on. Then run it.

e Return to MicroFEM and select Import Special ASCII files. Select
CSV-file and open the file you just saved in Excel. The new coordi-
nates will be read and the nodes on the upper model boundary have
shifted downwards. The grid has been deformed and now is a better
approximation of the shape of the saturated part of the model domain.

e With the nodes shifted, the shape of the elements is not necessarily
ideal. Therefore we will let MicroFEM optimize the shape of the net-
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work. In the Walking mode, mark all nodes. Then go to the Alter grid
mode and press F10 (‘Relocate marked nodes’). You can see the net-
work being optimized. It doensn’t hurt to do this 2 more times to get
the most optimal grid.

e Now calculate the heads again and repeat the steps above until the
shape of the grid (or the position of the groundwater table) no longer
changes. The flow problem is then solved.

In this example, the shape of the grid depends on the calculated heads. The
flexibility of finite element methods and the powerful capabilities of Micro-
FEM allow you to solve this problem. Solving the same type of problem in
MODFLOW is not so easy!

. Draw flowlines starting all nodes of the infiltration canal bed. Hint: give
these nodes the same label (e.g. ‘canal’).

. Set up a water balance. How much water is lost to each drain?

. If you have time left, you can play around with the hydraulic conductivity
and see what effect it has. For example, change use a value-df m/day

and note the effect on the head contours and the water balances. Or you
could introduce anisotropy (e.g, = 25 andk, = 1 m/day).
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Chapter 7

Systems of linear equations

Numerical approximations of the governing equations for groundwatetdiad to
a set of algebraic equations that can be solved for the unknown heg&jigdration
or (ii) direct solution techniques. With direct solutions, the system of equaitm
transformed into matrices and the unknown heads are solved using thejtezshn
of linear algebra. Therefore, some knowledge these subjects is indagerif you
are working with numerical groundwater models.

This document is intended for self-study and will give you a basic congpreh
sion of the relevant topics for the practicing hydrologist. Some of the esesrc
require the use of Python. Python provides support for matrix opesativnugh
the Numpy library. These are not described here but you are expectgdand
look these up yourself in the on-line documentation for Numpy. A good starting
point is the following website:
http://docs. sci py. org/doc/ nunpy/reference/i ndex. htm
But of course, when in doubt or when you get stuck, do not hesitatekiy@ur
instructor!

7.1 Linear equations

A linear equation is an algebraic expression with one or more variable in which
each term is a constant or the product of a constant and a variablexd&ople:

h(z) = Ax + B (7.2)

whereh is the dependent variable,is the independent variabld, is theslope or
gradient andB is theintercept, i.e. the value oh whenz = 0.

39


http://docs.scipy.org/doc/numpy/reference/index.html
http://docs.scipy.org/doc/numpy/reference/index.html

Chapter 7

4qx

Figure 7.1: Schematic cross-section depicting a confined aquifer with one-
dimensional horizontal flow.

7.2 Systems of linear equations

Two variables

Recall that Equation 7.1 is the general solution of a one-dimensional pifteat
ential equation

0h
902 0 (7.2)
that describes the hydraulic headh a confined aquifer between two canals as de-
picted in Figuré_7J1. As a demonstration example efsiem of linear equations,
let’s try to determine the integration constartand B from boundary conditions.
So instead of treatingg andx as the dependent and independent variables, respec-
tively, their values become fixed by the following boundary conditions:
= hoy (7.3)

-

hl = h (7.4)

r=x1
Combining condition§ 713 arld 7.4 with Equation]7.1 and yields a system of
two linear equations:

ho = Axg + B (7.5)
hy = Az, + B (7.6)

in which A and B are the unknowns angd), =1, hg andh; are known constants. If
we wish to find the numerical values dfand B we must findthe solution to this
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system of linear equations. This means finding the values afid B so that both
Equatiorl 7.b and 7.6 are satisfied.

Assume thaty = 10, h;y = 9, 29 = 50 andzy = 15@. Let B now be the
dependent and be the independent variable so that we have:

B=10-504 7.7)
B=9—1504 (7.8)

One way to find the solution is to plot Equatidns|7.7 7.8 ina graph and to
look up the point where they intersect. This is shown in Figure 7.2. Obvicihssy
method can be inaccurate when the graph is drawn by hand and is notestorab
systems of equations with more than 2 variables.

Exercise: Find the graphical solution to Equations|7.5 7.640and B as-
sumingzo = 0 and the other parameters as listed above.

A better way would be to use the method of substitution. This involves reduc-
ing the number of unknowns by expressiAgas a function ofB using either one
of the Equationg 717 &r_4.8 and substituting the result into the other. The eguatio
obtained this way can be solved fBr. The value ofA is subsequently found by
substituting the calculated value Bfin either Equations 717 or 7.8 and solving for
A.

Exercise: Find the solution of Equatioris 7.7 and17.8 by the method of substitu-
tion. Verify that your answer is the same as in Fidure 7.2. Note that the sojution
is written as{(A, B)}, i.e. a set containing an ordered pair.

For the system described by Equatiéns 7.7 of 7.8 there is one solution and
therefore it is called aonsistent system. Arninconsistent system on the other hand
has no solution. For example, the linear system:

504+ B =10 (7.9)
50A+ B =9 (7.10)

represents two parallel lines and therefore has no solution. This is debpte
null or an empty setf) or {}. Note that substitution would yielth = 9, which is
a contradiction from which it is clear that there can be no solution.

A system of two linear equations with two variables will have an infinite num-
ber of solutions when the two lines coincide. This occurs if the equationa are
multiple of each other. For example:

50A + B = 10 (7.11)
1004 + 2B = 20 (7.12)

LAll having length units, for example m
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Figure 7.2: Graphical representation of Equations 7.7and 7.8.

represent the same line in a plotdfversusB. This is called alependent system
and the solution is either of these two equatiof(s4, B) | 504 + B = 10}.

Three (or more) variables

To develop a system of linear equations of three variables, supposewe like

to solve Equation 712 numerically. For this purpose, the domain betwgand

x1 is first discretized intm cells. The numerical approximation yields (central in
space, cf. lecture notes):

@ he—1 —2he + het

5~ Aap =0 (7.13)

or:
2he = he1 + hes (7.14)

where the subscriptindicates the cell numbet (< ¢ < n). Suppose that = 5
and that the heads in the first and fifth cells are fixed heads hyite= 10 and
hs = 6. The heads in the nodés, hs andhy are then given by:

2Ny = 10 + hs
2hs = ho + hy
2hy = h3 +6
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that can be written as a system of linear equations with three variables:

2ha —  hsg = 10
—ho 4+ 2h3 — hy = 0 (7.15)
— h3 + 2hy = 6

This system system of equations can be solvethors andh, by an algo-
rithm calledGaussian elimination. It useselementary row operationsto transform
the linear equations into a form that is easily solved. Application of theseaoper
tions does not change the solution of the system of linear equations. €tetiops
are:

1. Equations can be interchanged
2. An equation can be multiplied with a non-zero constant
3. An equation can be multiplied by a constant and added to another equation

As an example, first reverse the first and second equation in the sysfaradiby
Equatiori 7.1b (Operation 1):

%hy —  hs 10 (7.16)
- hs + 2hy = 6

Then add 2 times the first equation to the second equation (Operation 3):

—hy 4+ 2h3 — hy = 0
3hy — 2hy = 10 (7.17)
- hs + 2hy = 6

Finally, multiply the third equation by 3 (Operation 2) and add the second
equation (Operation 3):

—hy + 2h3 — hy = 0
3hy — 2hy = 10 (7.18)
4hy, = 28

This form of the system of equations is callechelon form (or row echelon
form), meaning that that the first non-zero leading coefficient in an equation is
to the right of the first leading coefficient in the equation above it. A system is
in reduced-echelon form when the first coefficient in an equation is always one.
To transform the system of equations into reduced-echelon form, equhti®
multiplied by -1, equation 2 by/3 and equation 3 by /4:

ho — 2hs + hy = 0
hy — 2/3h = 10/3 (7.19)
hy = 7
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which immediately yield$, = 7. The values oh, andhs are subsequently found
by substitution.

Exercise: Find the values ohy andhs by back-substitution.

Exercise: Find the values ofd and B in Equationd_7J7 an 7.8 by Gaussjan
elimination.
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Matrices

8.1 Definition

A matrix is a rectangular array of numbers. It consistsrofows andn columns,
which are written between square or round brackets. For example, th& pdatr

A:[; Z 2] 8.1)

This matrix has 2 rows and 3 columns. dtsler is therefore2 x 3. Each num-
ber in the matrix is called adement. Elements can be real or complex numbers.
Elements are denoted lay . whereby subscripts andc refer to the row and col-
umn number, respectively. For examplg,s refers to the number in the second
row and third column, i.eas 3 = 6. Sometimes the comma between the row and
column indexes is omitted but this may lead to ambiguity wheh 10 orn > 10.

Two matrices are equal if their order is the same and when all the corisgon
elements in both matrices are the same. ffaespose of a matrix is obtained when
its rows and columns are interchanged. The transposkisfdenoted byA” and
is defined asA” = (a,,), for1 < r < mandl < ¢ < n. The order ofAT is
n x m. For example:

1
AT =1 3 (8.2)
5

S =N

Exercise: Define A in Python and findd” .

8.2 Special matrices

A row vector is a matrix that has only one row, i.e. = 1. Similarly, acolumn
vector hasn = 1. A square matrix has» = n. A square matrix is &ymmetric
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matrix whenA” = A. For askew-symmetric matrix A7 = —A.

The elements., . of a square matrix4 for which » = ¢ together form the
principal or main diagonal. The sum of these elements is called thexe. If a
square matrix4 hasa,. = 0 whenr # c then this matrix is called diagonal
matrix.

A triangular matrix is a square matrix that has only non-zero values on or on
one side of the principal diagonal. Aupper triangular matrix has all non-zero
elements on the principal diagonal or above it. All elements below its principal
diagonal are zero. Fower triangular matrix has all non-zero elements on or below
the principal diagonal and only zero elements above it.

A diagonal matrix of which all elements. . = 1 whenr = c s called arunit
or identity matrix, which is denoted by. For example, an identity matrix of size
3

100
I={0 10 (8.3)
0 0 1
A matrix whose elements all equal zero is callezbia matrix, which, unlike

an identity matrix, is not necessarily square. It is usually denoted by 0. Zero
and identity matrices play the same role as the numbers 0 and 1 in ordinarysalgebr

Exercise: Use the standard Numpy commands to create a diagonal matrix, @ zero
matrix and an identity matrix, all of ordérx 3.

8.3 Operations

Addition

If two matricesA and B are of the same order, their individual elements can be
added. Their sum is defined as+ B = (a,. + b..), for 1 < r < m and
1 < ¢ < n. For example:

7 09 11
B_{s 10 12} 84)

135 709 11 § 12 16
A+B_{246]+[8 10 12}_{10 14 18] (8:5)

Matrix addition is both commutatived + B = B + A and associativeA +
(B+C) = (A+ B) + C. For a zero matrix of the same order_4st holds that
A+0=0+A=A
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Subtraction

Similarly, matricesA and B can be subtracted. The difference is definedias
B = (arc—bye),forl <r <mandl < ¢ <n. So:

1 35 709 11 -6 —6 —6
A_B_[246]_[8 10 12]_[—6 —6 —6] (86)

Scalar multiplication

Multiplying each element of a matrid with a scalar A number gives thecalar
product AA = AX = (Aa,.), for1 <r <mandl < ¢ < n. For example:

135 2 6 10
Q'A_2'[246}_[4812} (8.7)

Matrix multiplication

A matrix can also be multiplied with another matrix provided that the left matrix
has the same number of rows as the number of columns of the right matrix. The
result is called thenatrix product. If A has ordemn x n and C has orden x p

then the product
A-C=D= (Z arﬂ-cm) (8.8)
=1

for1 <r <mandl < ¢ < p. The order of D isn x p. For example:

7 8
c=1| 9 10 (8.9)
11 12

7 8
A~C:[;32} 9 10 | =
11 12

1-7+3-9+5-11 1-84+3-10+5-12 | 89 98 (8.10)
2-7+4-9+6-11 2-8+4-10+6-12 116 128 ’

| Exercise: Define A andC in Python and calculatéC. |

Matrix multiplication is not commutative, i.eAB # B A, because the dimen-
sions may not agree if the order is reversed. Just like for real numivertsix
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multiplication is both associative, i.e(AB)C = A(BC) and distributive, i.e.
(A+ B)C = AC + BCandC(A+ B) =CA+ CB.

The result of a multiplication of a matriA by a zero matrbOisA-O = O =
0. Multiplying a matrix A with an identity matrix/ givesA - I = A. For square
matricesitholdsthatl - I =71-A=AandA-O=0-A=0.

Note that matrix division is undefined. Sodf- C' = D then there is no such
thing asC = D/A. If AandD are give,C can be found, however, by multiplying
D with the so-callednverse of A (A has to be square). Before discussing this
concept, it is necessary to introduce another matrix propertyletieeminant.

8.4 Determinant

Every square matrix has a real number associated with it which is calledbthe
terminant. The determinant of matrixl is denoted bylet A or sometimegA|.

It is not so easy to explain what a determinant is in words so let’s just camsid
its mathematical definition and start with the determinant df>a2 matrix. It is
defined as the product of the elements on the principal diagonal minusaitiegbr
of the elements off the principal diagonal:

a a
det 11 1.2 | = a1,1G22 — G1.202 1 (8.11)
az1 Qa2
For square matrices of size 3 and more, a technique ca#ipidice expansion
can be used to determine the determinant. It is based on the expansion oixa matr
in minors andcofactors.

Minor

Suppose we have square matrlx For every element, . in A there exists a
quantity calledminor which is the determinant of the matrix that results when the
row r and columrc: are deleted from the original matrix. For example:

1 1 1
A=12 4 -3 (8.12)
3 6 -5
then fora; ; the minori/ ; is:
4 -3
Ml,lzdet[ﬁ _5]:4-53'6:2 (8.13)

Cofactor

Thecofactor is theminor M, . multiplied by (—1)"*¢:

Cre=(=1)"1M,, (8.14)
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whereC,. . is the cofactor. The factqr—1)"*¢ effectively determines the sign of
the minor depending on its position within the matrix. Se if ¢ is positive, the
sign of the minor does not changerK-c is negative the sign of the minor reverses.

Exercise: Calculate the cofactorS 1, Cy 2 andCh 3.

With the minor and cofactor defined, the determinant of a matrix can be found
from:

det A= "0 Chrpe (8.15)
c=1

for any rowr. In words this formula reads: The determinant of a matrix is the sum
of the product of the elements in a particular row multiplied by their cofactams. F
example:

11 1
det A = det 2 4 -3 = CL17101,1 + a172C'172 + CL1,30173 (816)
3 6 =5

Inserting the numbers gives:

detA=1--2+41-141-0=—1 (8.17)

Exercise: Calculatedet A by selecting- = 3. ‘

The same approach can be applied by selecting a particular column rather tha
a row. The determinant is the calculated from:

det A =" ayChre (8.18)
r=1

for any columnc.

Exercise: Calculatedet A by selecting: = 2. |

For square matrices of size 4 and higher, the approach is the same. e wo
involved can be substantial: Forax 4 matrix, four cofactors must be calculated,
each requiring thre2 x 2 determinants to be calculated, i.e. a total of twelve2
determinants. For any sizethe number o2 x 2 determinants to be calculated
is n!/2. In practice this number can be less if the matrix contains zero elements:
Because the cofactor is multiplied with the value of the element, there is no need
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to calculate the cofactor if it is multiplied by a zero anyway. Consider a matrix
which contains 2 zero elements in colume: 2:

(8.19)

RO O
o N Ol )
DO N R DO

Expanding along columna = 2 will halve the number of calculations involved
since there is no point in calculating the cofactots, andC’; » because these are
multiplied with 2z » = 0 andz, 3 = 0.

Exercise: Use Python to calculate the determinantZof

Transposing a square matrix does not change it determinantdéed =
det AT. If any two rows or columns are interchanged the numerical value of the
determinant remains the same but its sign changes. If a matrix is multiplied by a
scalar, then the determinant is also multiplied by this scalaréel A = X det A.
For matrix multiplication it holds that wheA and B are square and of the same
order,det AB = det Adet B

8.5 Cramer'srule

One application of determinants is the solution of a system of linear equatiioigs us
Cramer’s rule. Suppose we have a system of 3 linear equations with wng&n

r1 + T2 + xr3 =
201 + 4xo — 3z3 = 1 (8.20)
3r1 4+ 6x9 — bxg = 0

which can be written in matrix form as (cf. Equationl]8.8):
1 1 1 T
2 4 -3 T | =1 (8.21)
3 6 —5 T3
or, with A, X andR representing the respective matrices:
AX =R (8.22)
Cramer’s rule states that the elementsxo€an be found from:

o det A,
" det A

(8.23)
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forl <r <mandc=r. A.is the matrix that is obtained when columaim A is
replaced by column vectdk. For example, to find:, the first step is to calculate
det A1, which is:

9 1 1
detA;=det | 1 4 -3 | =-7 (8.24)
06 —5

The determinant oft was calculated earlier (Equatibn 8.17). Inserting these values
into Equatiori 8.23 gives:
-7

= =7 (8.25)

I

| Exercise: Apply Cramer's rule to findz andzs. |

The determinant of a matrix can be zero if an entire row is zero or if a row
(or column) is a multiple of another row (or column). This also includes rows (0
columns) which are the same (i.e. the multiplier is 1). If the determinant of a matrix
is zero, it is called aingular matrix. Sincedet A appears in the denominator of
Equatiori 8.28, Cramer’s rule can not be applied when a matrix is singularsbe
conditions may apply depending on the values of the determinantsaofd R.
These are summarized in table]8.1.

A hydrological application of Cramer’s rule is in the derivation of the finite
element approximation of the groundwater equation.

8.6 Inverse of a matrix

The inverse of a square matrikis denoted byd—! and is defined bydA~! = 1.
The inverse can be used to solve a system of linear equations. The salufion
in Equatior 8.2 is:

X=A"R (8.26)

For a square matrid the inverse can be found from:

o T

= 8.27
det A ( )

Table 8.1: Possible solutions for systems of linear equations dependingeon th
values ofdet A anddet R.

det R #0 det R=10

det A # 0 | unique solution X =0 (trivial solution)

det A = 0 | infinite number of solutions infinite number of solutions
ifdetA. =0,1<c<m
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in which C' is a matrix of cofactors ofd and its transpos€” is the so-called
adjugate of A. From Equatiori 8.27 it follows that the inverse can only exist if
det A # 0. If this is the case thed is called anon-singular matrix (as opposed to
asingular matrix).

For matrix A in Equatiof8.IR( is:

—2 1 0
c=| 1 -8 -3 (8.28)
-7 5 2]
SO:
. —2 11 -7 [ 2 -1l 7
A7l = cT=—| 1 -8 5 |=|-1 8 —5 (8.29)
det A Tl 3 2] | 0o 3 -2

Exercise: InsertA—! andR (Equatior{8.211) into Equatidn 8.26 to fidd.

Exercise: Express the system of linear equations defined by Equation 7,15 in
matrix form, i.e.,Ah = R. Find h by calculatingA—! and applying Equation
8.26.

Obviously, calculating the inverse of a matrix by hand can be a lot of waak an
mistakes are easily made. Computers are much better at these sorts of calsulatio
than humans.

Exercise: Use Python to calculaté—! andA~'R = X.
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